ONLINE METHODS
Supporting Text: Online methods and consortia members.
Participating studies

Parkinson’s Progression Marker Initiative (PPMI) - The Parkinson’s Progression Marker
Initiative is an observational multi-center, international study sponsored by the Michael J. Fox
Foundation for Parkinson’s Research and partially funded by 17 industry sponsors. The overall
goal of the study is to identify and validate biomarkers of PD progression (PD). The study
population consists of untreated recently diagnosed PD (423), similar age and gender healthy
controls (196) and subjects screened as potential PD subjects but with dopamine transporter
imaging scans, measured by DaTSCAN® without evidence of dopaminergic deficit (SWEDD).
Participants enrolled in PPMI undergo a series of longitudinal assessments, including
standardized functional assessments, neuroimaging, and biofluid collection (including DNA from
whole blood). In this report, the PPMI cohort is divided into three groups of participants: healthy
controls (HC), PD subjects and SWEDD subjects. PD subjects in PPMI are required to
demonstrate at least asymmetric resting tremor or asymmetric bradykinesia or some
combination of bradykinesia, resting tremor and/or rigidity within two years of diagnosis . They
must be untreated for PD at the time of enrollment, as well as for the prior two years. PD cases
must have an abnormal DaTSCAN® indicating dompamine transporter deficit. SWEDD
participants have the same clinical criteria as PD cases, but DaT scanning data does not
demonstrate an abnormal DaTSCAN® . HC samples are clinically defined as having no known
neurologic dysfunction and a Montreal Cognitive Assessment (MoCA) > 26 2. The PD phenotype
in this analysis excludes known SWEDD participants. The exclusion of SWEDD participants
from the PD model allows us to focus our efforts on more etiologically typical PD as defined by
the clinical diagnosis and DaT scanning data. All data in PPMI is available to qualified
investigators via http://www.ppmi-info.org/.

Parkinson’s Disease Biomarkers Program (PDBP) - Established in November 2012 by the
National Institute of Neurological Disorders and Stroke (NINDS), the PDBP seeks to identify and
develop potential PD biomarkers, ideally for use in clinical trials of neuroprotective agents. The
PDBP includes four key components: 1) biomarker hypothesis testing and collection of clinical
data and biospecimens, 2) studies to identify novel PD biomarkers, 3) biospecimen banking and
distribution, and 4) data management through the Data Management Resource (DMR). The
application of these goals has resulted in the establishment of a self-structured consortium
consisting of 11 unique projects, 6 of which actively enroll participants. Consortium-wide
protocols ensure standardization of data collection and biospecimen processing. A standard set
of clinical assessments and biospecimen collection procedures are used for all participants and
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specified by the NINDS (see RFA NS-12-011). These clinical assessments were chosen based
on the NINDS Common Data Elements (see http://www.commondataelements.ninds.nih.gov) as
well as for overlap with assessments used in BioFIND and PPMI. The PDBP has enrolled over
1,000 participants to date including participants with PD based on clinical criteria, neurologically
normal controls, and other individuals with parkinsonism not meeting typical PD criteria as
defined by the UK Parkinson’s Disease Society Brain Bank Clinical Diagnostic Criteria®. All sites
use the DMR to record data; storage of biospecimens and quality control analysis are performed
by NINDS Repository Laboratories. To access data and more information regarding PDBP,
please refer to https://pdbp.ninds.nih.gov/.

Parkinson’s Associated Risk Study (PARS) - The PARS study is a prospective study aiming
to test a sequential biomarker strategy to identify subjects at high risk for developing motor
symptoms of PD. The study enrolled approximately 10,000 individuals to examine their risk
profile for PD. The study tested individual over age 60 with olfactory testing (using the
University of Pennsylvania Smell Identification Test (UPSIT)) sent by mail to identify a
population of hyposmic and normaosmic subjects for more intensive clinical and biomarker
testing including dopamine transporter imaging. The study has demonstrated that hyposmic
subjects have a 11% risk of marked dopamine transporter deficit. During four year follow-up
approximately 60% (14 subjects) of subjects identified with hyposmia and dopamine transporter
deficit have developed motor PD. The PARS study enrollment and follow-up is ongoing and
more information is available at http://www.parsinfosource.com/. We treated PARS as a positive
control since hyposmia defined by a low UPSIT score and to a lesser degree family history were
criteria for recruitment of at risk individuals. We do not regard this as a true validation but more
of a theoretical proof of concept for our classification model that was developed and trained on
PPMI data.

23andMe - The 23andMe Parkinson’s Disease cohort was described in detail previously *.
Briefly, patients with PD were recruited through a targeted email campaign in conjunction with
the Michael J. Fox Foundation, The Parkinson's Institute and Clinical Center, and numerous
other PD patient groups and clinics. As part of a Michael J. Fox Foundation-funded study of PD
biomarkers focusing mainly on individuals harboring at least one LRRK2 p.G2019S allele, 20
individuals from the 23andMe Parkinson’s Disease cohort without LRRK2 p.G2019S and 20
healthy controls underwent blood draws and completed the UPSIT. Additional phenotypic
information was obtained through online questionnaires and classification as cases and controls
was performed as described previously. The 23andMe study protocol and consent were
approved by the external Association for the Accreditation of Human Research Protection
Programs, Inc. accredited Institutional Review Board, Ethical and Independent Review Services.
Our consent and privacy statement preclude sharing of individual-level data without explicit
consent.
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The Longitudinal and Biomarker Study in PD (LABS-PD) - The Longitudinal and Biomarker
Study in PD is an observational study designed to prospectively measure the evolution of motor
and non-motor features of PD and identify promising biomarkers of progression from early to
late stages of the disease. Study participants had previously been enrolled in a controlled
clinical trial of a mixed lineage kinase inhibitor in early, untreated PD (PreCEPT); the average
duration of illness was less than 1 year, and subjects did not require dopaminergic therapy.
Many of the original trial participants were subsequently enrolled in a follow-up study
(PostCEPT) and later participated in a longitudinal clinical assessment program for biomarker
development in PD, with annual visits and remote follow-up. As part of the PreCEPT and
PostCEPT studies, subjects underwent DAT imaging; SWEDD participants were identified as
per PPMI.

Morris K. Udall Parkinson's Disease Research Center of Excellence (Penn-Udall) - The
NINDS funded Penn-Udall Center was launched at the Perelman School of Medicine (Penn) at
the University of Pennsylvania in 2007 (P50 NS062684 Pacific Northwest Udall Center,
Zabetian PI and P50 NS053488, Trojanowski JQT-PI). The overarching goals of the Penn Udall
Center are to elucidate mechanisms of disease progression and alpha—synuclein transmission
through synergistic collaborations between basic and translational research.

The Clinical Core of the Penn Udall Center recruits patients with PD, PDD and DLB to
participate in a longitudinal battery of neuropsychological testing and to donate plasma, whole
blood for DNA, cerebrospinal fluid, structural and functional brain imaging and post-mortem
brain tissue. The specific goal of the biomarker collection effort is to improve the ability to
predict whether an individual patient with PD is likely to develop significant cognitive decline. To
date we have enrolled over 300 patients in longitudinal neuropsychological testing, and of those
over 100 have participated in complete biomarker collection, including blood for DNA.

Assignment of a cognitive diagnosis is made for each patient at baseline and at every annual or
biannual visit during a consensus conference held every six months by movement disorders
specialists affiliated with the Penn Udall Center. A participant is discontinued from the study if
assigned a diagnosis of dementia in two consecutive years; for the purpose of these analyses,
this diagnosis is carried forward if the patient is still alive at the time that a future visit would
have occurred.

Factors included in the integrative model

Our integrative classifying model utilizes information from UPSIT, GRS, age, gender and family
history to estimate risk. None of the factors included in our integrative classifying model are
used in the clinical diagnosis of PD. Also, none of the cohorts assessed by this model were
responsible for the discovery of the factors included in the classifying model. In addition, no
factors in the integrative classifying model were used as part of recruitment for any cohorts
except for one study (discussed below), which was used as a positive control in validating our



model. This allows us to avoid circularity, overestimation, and overfitting of the classification
model. Please see Table 1 for descriptive statistics of the participating studies.

The UPSIT is a commercially available test that uses smell identification to test the function of
an individual's sense of smell °. It is the gold standard of smell identification tests for its reliability
and practicality. Smell dysfunction is known to occur in several neurodegenerative disorders,
including in PD, and has been suggested as a potential biomarker ®’ Because of the rich
clinical data available in the studies participating in this project, we were able to include UPSIT
data in our analysis.

GRS were calculated by summing the risk allele counts for the 28 common risk loci identified
and replicated in the most recent large-scale meta-analysis of PD genome-wide association
study (GWAS) data, as well as including two additional relatively rare risk variants detected
within PPMI known to be associated with PD (p.N370S in GBA and p.G2019S in LRRK2) °*'*""
R in PPMI, we see expected frequencies of G2019S and N370S variants in PD cases (1.3%
and 1.9% respectively) and even find one N370S in controls, with the inclusion of these variants
improving the AUC of the GRS by ~1% over previous efforts only focusing on the 28
independent common risk variants [unpublished data]. Prior to summing the risk allele counts,
all allele counts per variant were scaled by their log odds ratios. The effect estimates for the 28
common variants were extracted from Nalls et al., 2014, and odds ratios of rare alleles at GBA
p.N370S (3.33) and LRRK2 p.G2019S (9.620) were taken from the PDgene database and
23andMe [www.pdgene.org and www.23andme.com]14. In all cohorts except 23andMe, after
the scaled risk allele counts were summed and divided by the number of loci, they were
transformed into Z scores using the healthy controls in PPMI as a reference. This aids in
communicating effect estimates, with Z corresponding to a single standard deviation from the
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control mean genetic risk of PD. This method for calculating risk scores mirrors that in the
software package PLINK [http://pngu.mgh.harvard.edu/~purcell/plink/profile.shtml]'®. Due to the
slightly different study design and genotyping in the 23andMe cohort, imputed dosages of risk
alleles were summed and divided by the number of loci and then transformed into Z scores
using a reference set of 334,839 unrelated European individuals who self-reported as not
having PD. Information regarding variants and effect estimates used in generating the GRS is
included in the underlying data available for download by interested researchers. As a note, the
GRS was used instead of single SNP estimates to improve power, as these associations were
initially discovered in over 100,000 samples and effect estimates of single variants would not be
accurate in cohorts of less than 1,000 samples as in this study.

Of the 40 total 23andMe samples used here, 31 were used to discover the loci comprising the
GRS. However, the influence of these overlapping samples is trivial due to the immense size of
the GWAS discovery efforts. Although LABS-PD was used in the replication phase of analyses
for some loci, these comprise a negligible amount of the sample series contributing to the
previous GWAS. Of note, the PPMI, PARS, Penn-Udall and PDBP cohorts did not have genetic
data available at the time of this most recent GWAS effort used to identify and replicate the loci
comprising the score and therefore were not included in that effort either.

Gender, age (at onset for cases and at last exam for controls) as well as family history were all
self-reported information. To clarify, we regard family history as self-report of a first or second
degree relative with a diagnosis of PD. When applicable, medical records were used to
corroborate this information.

Genetic data

Genotypic data for all studies except Penn-Udall and 23andMe were generated at the National
Institute on Aging’s Laboratory of Neurogenetics using the NeuroX genotyping array available
from lllumina Inc. Penn-Udall genotypic data was generated using the NeuroX array at the
Center for Applied Genomics in Philadelphia, PA. For a detailed description of the NeuroX
array, its content, and genotype calling methods, please see previously published work .
Quality control methods for the NeuroX genotyped samples are described in detail elsewhere '’.
In brief, all NeuroX genotyped samples met the following inclusion criteria: per variant and per
sample missingness < 5%; concordance between self-reported gender and genetically
ascertained gender; no first or second degree relatives within each dataset from self-report and
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genetically ascertained relationships based on common polymorphisms; and European ancestry
from self-report and genetic confirmation when compared to known reference populations .

Genotypic data for the 23andMe cohort were generated by National Genetics Institute (NGI), a
Clinical Laboratory Improvements Amendments (CLIA) certified clinical laboratory and
subsidiary of Laboratory Corporation of America. Samples were genotyped on either the
lllumina HumanHap550+ BeadChip platform (n=10) or the lllumina HumanOmniExpress+
BeadChip platform (n=30), as described previously °. Every sample that did not reach a 98.5%
call rate for SNPs on the standard platforms was reanalyzed. Individuals whose analyses
repeatedly failed were contacted by 23andMe customer service to provide additional samples.

Model generation

We selected known non-invasive risk factors for PD to train our classification framework in the
PPMI cohort. In this model, we selected three time-independent factors: family history of PD
from self-report in 1st or 2nd degree relatives, female gender, and a GRS; we also selected two
time-dependent factors: age (onset in cases and most recent exam in controls) and total UPSIT
score. The UPSIT is scored by summing all correctly-identified odors out of the 40 items within
the UPSIT test booklets. The odors are culturally adjusted for familiarity. All five factors were
entered into a logistic regression model to generate estimates of case probability used to
classify samples in PPMI as cases or controls at baseline. In PPMI we regard baseline as the
first clinic visit for controls at enrollment, or the initial exam at recruitment that is roughly
concurrent with that participant’s PD diagnosis. Receiver operator characteristic (ROC) curves
were used to quantify accuracy of the classification within the cohort. This probabilistic model
was then applied to all other studies after training on PPMI. As a note, this model was trained
on PPMI excluding known SWEDD samples. All parameters in the integrative classifying model
contribute to the overall information content of the model based on Akaike information criteria
(AIC) and surviving backwards and forwards stepwise modeling in PPMI?. We term this more
complex model the “integrative model” in this report. Additional classifying models outside of
the integrative model described above were created to estimate the accuracy of using only
UPSIT, only the GRS, and only demographic factors (i.e. family history, age and female
gender). Only AIC was used for model pruning and due to power concerns in small sample
sizes, interactions were not incorporated into model generation. Standardized beta-coefficients
were generated within the integrative model to compare the overall effect sizes of factors in the
integrative model using PPMI data.

Internal validation within PPMI
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After initial specification of the predictive model in PPMI, we used resampling to validate the
model within the cohort in silico. We resampled the PPMI PD and control samples over 10,000
iterations, generating parameters (beta-coefficients) on a randomly assigned training subset and
fitting the five predictors of the integrative model to a randomly assigned validation subset to
calculate AUCs. In this analysis, cases and controls were equally split at random between
training and test datasets per iteration. In addition, we also modified this workflow to run a
backwards stepwise pruning of the integrative model on the training subset, then fit this model
(which uses 2-5 parameters based on the subset in question) to the validation subset and
calculated AUCs for an additional 10,000 iterations. In this phase of analysis, subsets were
approximately equal in size and partitioned for each iteration of the resampling using a random
number generator to assign a sample to either the training or validation subset. For each
iteration, the AUC was calculated based on training parameters derived from a
randomly-generated subset and fitted to the corresponding validation subset, with no sample
overlap with the training set.

Calibration of the model within PPMI

To evaluate the calibration of the model in PPMI, we used the Hosmer-Lemeshow test?'. The
Hosmer-Lemeshow test itself has a weakness of erratic results across small sampling groups so
we used a variety of sampling scenarios within PPMI. We first evaluated calibration by
partitioning the data into 5, 10, 25, 50, and 100 groups and then running the calibration test.
Next, we repeated tests for all possible values between 5-100 groups and evaluated the
distribution of the test statistics.

Additional external validation

For all studies with available data, we fit the parameter estimates trained on the entire PPMI
dataset to evaluate the applicability of the integrative model’s classification algorithm. We also
compared the accuracy of the integrative model in the SWEDD subset of PPMI, which used
controls shared with the training set, but was not used to do any additional training of the
algorithm. Because the AUC could not be calculated for case-only studies using ROC (i.e. the
LABS-PD and Penn-Udall studies), we quantified accuracy by the proportion of PD case
classifications using a optimal prediction threshold derived from the best classification available
in the training set derived from the ROC curve. Best prediction thresholds maximizing combined
sensitivity and specificity were: 0.675 for the demographic model, 0.574 for the UPSIT model,
0.639 for the GRS model, and 0.655 for the integrative model.

Software note
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Details on the generation of raw genotypes from the NeuroX array can be found elsewhere
including the manual clustering of PD risk loci and the general lllumina-based pipeline. PLINK
was used for management of raw genotype data. All downstream statistical analyses outside of
the 23andMe dataset were carried out using R 3.0.2 on Ubuntu Linux 14.04 22, R packages
used include ggplot2, pROC, QuantPsyc, ResourceSelection, and scales 24'25’26'27'28.
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Supporting Table 1: Details of the stepwise regression. Logistic regression was used as
the basis for the integrative predictive model trained on the PPMI dataset. Parameter estimates
are sorted in descending order of Akaike information criterion.

Percentage
of variance
explained
Standardized by
Parameter Beta SE V4 P-value AlC Beta parameter
UPSIT -0.304 0.030  -10.077 <2.00E-16 603.27 -6.039 63.149
GRS 0.514 0.134  3.847 1.20E-04 371.55 1.303 13.626
Family
history 1.283 0471  2.723 0.006 362.41 1.088 11.379
Female 0.561 = 0.287 1.953 0.051 357.92 0.571 5.972
Age -0.026  0.014 -1.923 0.054 357.79 -0.562 5.875

Supporting Table 2: Variants included in the GRS calculations as they appear in the
PPMI and PDBP NeuroX genotype datasets.

Variant Name | NeuroX_ID Other Name | Data Dictionary Entry
rs114138760 [NeuroX_dbSNP_rs114138760 rs114138760 C/G (FWD) G:Ancestral C:Minor
GBA
rs76763715 exm106217 p.N370S rs76763715 C/T (FWD) T:Ancestral C:Minor
rs71628662 NeuroX_rs71628662 rs71628662 C/T (FWD) T:Ancestral C:Minor
rs823118 NeuroX_rs823118 rs823118 C/T (FWD) C:Ancestral T:Minor
rs10797576 NeuroX_rs10797576 rs10797576 C/T (FWD) C:Ancestral T:Minor
rs6430538 NeuroX_rs6430538 rs6430538 C/T (FWD) T:Ancestral C:Minor
rs1955337 NeuroX_rs1955337 rs1955337 G/T (FWD) G:Ancestral T:Minor
rs12637471 NeuroX_rs12637471 rs12637471 A/G (FWD) G:Ancestral A:Minor
rs34884217 NeuroX_rs34884217 rs34884217 (G/T) REV T:Ancestral C:Minor




rs34311866

NeuroX_rs34311866

rs34311866 A/G (REV) A:Ancestral C:Minor

rs11724635 NeuroX_rs11724635 rs11724635 A/C (FWD) A:Ancestral A:Minor
rs6812193 exm-rs6812193 rs6812193 C/T (FWD) C:Ancestral T:Minor
rs356181 NeuroX_rs356181 rs356181 C/T (REV) T:Ancestral A:Minor
rs3910105 NeuroX_rs3910105 rs3910105 C/T (REV) T:Ancestral G:Minor
rs8192591 exm535099 rs8192591 A/G (REV) G:Ancestral T:Minor
rs9275326 (was rs115462410) C/T (FWD)
rs115462410 |NeuroX_dbSNP_rs115462410 C:Ancestral T:Minor
rs199347 NeuroX_rs199347 rs199347 C/T (REV) C:Ancestral G:Minor
rs591323 NeuroX_rs591323 rs591323 A/G (FWD) G:Ancestral A:Minor
rs118117788 |NeuroX_dbSNP_rs118117788 rs118117788 C/T (FWD) C:Ancestral T:Minor
rs329648 NeuroX_rs329648 rs329648 C/T (FWD) T:Ancestral T:Minor
rs76904798 NeuroX_rs76904798 rs76904798 C/T (FWD) T:Ancestral T:Minor
LRRK2
rs34637584 [exm994671 p.G2019S rs34637584 A/G (FWD) G:Ancestral A:Minor
rs11060180 NeuroX_rs11060180 rs11060180 A/G (FWD) A:Ancestral G:Minor
rs11158026 NeuroX_rs11158026 rs11158026 C/T (FWD) T:Ancestral T:Minor
rs2414739 NeuroX_rs2414739 rs2414739 A/G (FWD) G:Ancestral G:Minor
rs14235 NeuroX_dbSNP_rs14235_replciate_1 rs14235 A/G (FWD) G:Ancestral A:Minor
rs11868035 |exm-rs11868035 rs11868035 A/G (FWD) G:Ancestral A:Minor
rs17649553 NeuroX_rs17649553 rs17649553 C/T (FWD) T:Ancestral T:Minor
rs12456492 NeuroX_rs12456492 rs12456492 A/G (FWD) G:Ancestral G:Minor
rs55785911 NeuroX_rs55785911 rs55785911 A/G (FWD) G:Ancestral A:Minor




