Supplementary Figure Legends, IMMUNITY-D-14-00831R1 Garg *et al.*

Figure S1 (related to Figure 1). Knockdown of MCPIP1 enhances IL-17-dependent gene expression. a. ST2 cells were transfected in triplicate with siRNAs against the indicated genes as described (Garg et al., 2013). Cells were treated \pm IL-17 for 3 h. Zc3h12a and Csf3 mRNA were assessed by qPCR. *p<0.05 compared to IL-17-treated siRNA control. ‡ p<0.05 compared to untreated siRNA control. Data are expressed as fold-change relative to the untreated scrambled control. b. Lysates from ST2 cells transfected with the indicated siRNAs were analyzed by immunoblotting for MCPIP1 (top) and β-tubulin (bottom). Densitometry indicated a 50% reduction in protein expression between control and $Zc3h12a^{+/-}$ cells. c. Primary fibroblasts from WT or $Zc3h12a^{+/-}$ mice were stimulated with IL-17 for 4 or 8 hours and IL-6 in supernatants were assessed by ELISA. *p<0.05 relative to IL-17-treated WT controls. ‡ p<0.05 compared to untreated WT controls. Experiments were performed a minimum of twice. **d.** Primary fibroblasts from $Zc3h12a^{-/-}$ or WT littermates were treated with IL-17 for 24 h and IL-6 assessed by ELISA.*p<0.05 compared to IL-17-treated controls. $\ddagger p < 0.05$ compared to untreated WT controls. Data presented as mean \pm SEM. All experiments were performed a minimum of twice.

Figure S2 (related to Figures 2-3). MCPIP1 knockout but not haploinsufficient mice show signs of inflammation in kidney and lung. Tissue from lung (a) or kidney (b) from WT (littermates), $Zc3h12a^{+/-}$ or $Zc3h12a^{-/-}$ mice (n=2-5) (Liang et al., 2010) were analyzed for the indicated genes by qPCR. Each symbol represents 1 mouse. **c.** The indicated mice were infected i.v. with *Candida albicans* and survival was assessed over 14 d.

Figure S3 (related to Figure 5). MCPIP1 regulation of transcription factors downstream of IL-17 signaling. ST2 cells were transfected with siRNAs against MCPIP1, stimulated with IL-17 for 3 h, and analyzed for expression of the indicated genes by qPCR. *p<0.05 compared to unstimulated control siRNA. $\ddagger p$ <0.05 compared

to IL-17-treated control siRNA. Data are presented as mean \pm SEM. Experiments were performed a minimum of twice.

Figure S4 (related to Figures 5-6). Ikbζ-dependent IL-17 target genes. a-b. ST2 cells were transfected with the indicated siRNA (targeting IkBζ, MCPIP1, Roquin-1, Roquin-2 or a scrambled control), treated with IL-17 for 3 h and the indicated genes were evaluated by qPCR normalized to GAPDH. Data expressed as fold-change relative to the untreated control siRNA. * p<0.05 compared to control siRNA treated with IL-17. & p<0.05 compared to MCPIP1 siRNA treated with IL-17. & p<0.05 compared to MCPIP1 siRNA treated with IL-17. & p<0.05 compared to MCPIP1 siRNA treated with IL-17. Schemet Schemet

Figure S5 (related to Figures 6-7). MCPIP1 does not degrade Act1 and does not co-IP with IL-17RA. a. Mouse Flag-tagged MCPIP1 was co-expressed in HEK293T cells with WT Act1 or the indicated mutants lacking the SEFIR domain (Δ SEF) or the U-box motif of the ubiqutin ligase domain (Liu et al., 2009), all Myc-tagged. Expression of Act1 and MCPIP1 were assessed by immunoblotting. b. HEK293T cells were transfected with MCPIP1± TLR4 (left) or TNFRp60 (right) tagged with HA. Lysates were assessed by immunoblotting. c MCPIP1 was co-expressed in HEK293T cells with TRAF6. Expression was assessed by immunoblotting. d. HEK293T cells were transfected with Myc-tagged IL-17RA (Ho et al., 2010) together with RNase deficient mutants of MCPIP1. Lysates were immunoprecipitated with Myc to pull down IL-17RA and blotted for MCPIP1 (top) or IL-17RA (middle). Expression of MCPIP1 in whole cell lysates (WCL) was confirmed (bottom). Experiments were performed a minimum of twice. e. ST2 cells were transfected with siRNAs against the indicated genes. Cells were treated ± IL-17 for 3 h. *Tnfaip3* (encoding A20) and *Usp25* mRNA were assessed by qPCR.

Figure S6 (related to Figures 6-7). MCPIP1 degrades IL-17RA through an Nterminal domain sequence. a. Schematic diagram of murine IL-17RA. Residues are indicated in black. Nucleotide (nt.) designation is indicated in red. b-c. The indicated HA-tagged IL-17RA mutants (Maitra et al., 2007) were co-expressed with MCPIP1. Whole cell lysates were immunoblotted for HA or Myc (to detect IL-17RA). **d**. Pooled fractions of HEK293T cell lysates transfected with His-tagged MCPIP1 were analyzed for expression of recombinant protein prior to dialysis. Experiments were performed a minimum of twice. *e. In vitro* transcribed mRNAs encoding *Il6* 3' UTR, *Il17ra* (nucleotides 1-775) or *Traf3ip2* (Act1) were incubated with water, buffer or recombinant MCPIP1 for 1 h at 30°C. Transcripts were analyzed on a denaturing agarose gel. Size markers are indicated. **f.** Spinal cords from $Zc3h12a^{+/+}$ or $Zc3h12a^{+/-}$ mice (n=5-6) subjected to EAE were analyzed for *Il17ra* expression by qPCR. Data expressed relative to *Gapdh*. **p*<0.05 by Students t-test. Experiments were performed a minimum of twice. **g**. $Zc3h12a^{+/+}$ and $Zc3h12a^{+/-}$ mice (n=1-4) were subjected to EAE and spinal cords evaluated by flow cytometry at days 8, 14 and 20. Representative IL-17RA staining on microglia (CD11b⁺CD45^{lo} population) is indicated (taken from day 20). Bottom: Mean fluorescence intensity (MFI) of IL-17RA staining in microglia harvested at days 8, 14 or 20 from unchallenged mice or mice subjected to EAE is indicated.

References

Garg, A., Ahmed, M., Vallejo, A., Ma, A., and Gaffen, S. (2013). The deubiquitinase A20 mediates feedback inhibition of Interleukin-17 receptor signaling. Science Signaling *6*, ra44-55.

Ho, A., Shen, F., Conti, H., Patel, N., Childs, E., Peterson, A., Hernandez-Santos, N., Kolls, J., Kane, L., Ouyang, W., *et al.* (2010). IL-17RC is required for immune signaling via an extended SEFIR domain in the cytoplasmic tail J Immunol *185*, 1063-1070.

Liang, J., Saad, Y., Lei, T., Wang, J., Qi, D., Yang, Q., Kolattukudy, P.E., and Fu, M. (2010). MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling. J Exp Med *207*, 2959-2973.

Liu, C., Qian, W., Qian, Y., Giltiay, N.V., Lu, Y., Swaidani, S., Misra, S., Deng, L., Chen, Z.J., and Li, X. (2009). Act1, a U-box E3 ubiquitin ligase for IL-17 signaling. Sci Signal *2*, ra63.

Maitra, A., Shen, F., Hanel, W., Mossman, K., Tocker, J., Swart, D., and Gaffen, S.L. (2007). Distinct functional motifs within the IL-17 receptor regulate signal transduction and target gene expression. Proc Natl Acad Sci, USA *104*, 7506-7511.

a.

ST2 Cells

C. 1° Fibroblasts

d.

a. Lung

Supplementary Figure 4 (Garg et al.)

Supplementary Figure 6 (Garg et al.)

