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ABSTRACT Even though the Toll-like receptor (TLR) pathway is integral to inflammatory defense mechanisms, its excessive
signaling may be devastating. Cells have acquired a cascade of strategies to regulate TLR signaling by targeting protein-protein
interactions, or ubiquitin chains, but the details of the inhibition mechanisms are still unclear. Here, we provide the structural
basis for the regulation of TLR signaling by constructing architectures of protein-protein interactions. Structural data suggest
that 1) Toll/IL-1R (TIR) domain-containing regulators (BCAP, SIGIRR, and ST2) interfere with TIR domain signalosome forma-
tion; 2) major deubiquitinases such as A20, CYLD, and DUBA prevent association of TRAF6 and TRAF3 with their partners,
in addition to removing K63-linked ubiquitin chains that serve as a docking platform for downstream effectors; 3) alternative
downstream pathways of TLRs also restrict signaling by competing to bind common partners through shared binding sites.
We also performed in silico mutagenesis analysis to characterize the effects of oncogenic mutations on the negative regulators
and to observe the cellular outcome (whether there is/is not inflammation). Missense mutations that fall on interfaces and
nonsense/frameshift mutations that result in truncated negative regulators disrupt the interactions with the targets, thereby
enabling constitutive activation of the nuclear factor-kappa B, and contributing to chronic inflammation, autoimmune diseases,
and oncogenesis.
INTRODUCTION
Toll-like receptors (TLRs) play pivotal roles in immune
responses against invading pathogens. They signal through
major pathways and give rise to inflammation (1,2). Defects
in TLR signaling predispose individuals to infections (3).
Over-activation can result in chronic inflammatory and
autoimmune diseases and contribute to oncogenesis (3–6).
To retain a delicate balance between activation and inhibi-
tion, and avoid detrimental effects of excessive inflam-
mation, TLR signaling is strictly regulated (7,8). Here, we
aim to better understand the mechanisms of negative regu-
lation of the TLR pathway to obtain insights into how the
balance is established and the immunological homeostasis
is achieved.

TLRs get activated when pathogenic particles, pathogen-
associated molecular patterns, as well as endogenous ligands
of damaged tissues, damage-associated molecular patterns,
bind to their extracellular leucine-rich repeats, resulting in
dimerization of their leucine-rich repeats and cytoplasmic
Toll/IL-1R (TIR) domains (9). Through their TIR domains,
they recruit other TIR domain-containing adaptors, such
as Mal, myeloid differentiation primary response protein
(MyD88), TRIF-related adaptor molecule (TRAM), and
TIR-domain-containing adapter-inducing interferon-b
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(TRIF) and form TIR domain signalosomes, multimeric
protein assemblies. The TIR domain signalosome either
comprises TLR/Mal/MyD88 or TLR/TRAM/TRIF (10).
Subsequently, MyD88-dependent TIR domain signalosome
recruits IRAK4, IRAK2/IRAK1, and TRAF6, which lead
to activation of the nuclear factor-kappa B (NF-kB) and
mitogen-activated protein kinases (MAPKs), and transcrip-
tion of proinflammatory cytokines, like interleukin (IL)-1b
and tumor necrosis factor (TNF)-a (1). The TRIF-dependent
TIR domain signalosome employs TRAF3 to activate inter-
feron-regulatory factors (IRFs) to induce transcription of
antiviral interferons (IFNs) and antiinflammatory IL-10
(11,12).

Negative regulation of TLR signaling takes place at
multiple steps, ranging from extracellular soluble decoy
TLRs, to transmembrane and intracellular inhibitors such
as those that contain TIR domain (6,7). At almost each
step in the TLR signaling cascade, protein interactions or
ubiquitin (Ub) chains are targeted by one or more inhibi-
tors (Fig. 1). The presence of several checkpoints and the
redundancy of negative regulators suggest that regulation
can be achieved by a cascade of regulators, indicating
that a particular inhibitor may be essential but not
enough to fine-tune signaling (7), or that different regula-
tors may take action in different tissue types or at different
times. Although some inhibitors are constitutively ex-
pressed, others are upregulated upon TLR stimulation.
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FIGURE 1 Negative regulators take action at

almost all steps of TLR signaling. Red-labeled

edges show the negative regulators that turn off

the TLR signaling. The bolded red edges are the

interactions that are modeled here. Blue-labeled

edges are negative regulations from the parallel

downstream paths to the conventional proinflam-

matory path. They switch the signaling path, not

terminate the signal. To see this figure in color,

go online.
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TLR-induced apoptosis comes into play when negative reg-
ulators fail and the cell becomes overactive (7). Alternative
downstream paths of TLR signaling are competitive (10),
limiting signaling through the temporally outcompeted
pathways. Here, we focus on cytoplasmic and transmem-
brane regulators to elucidate the mechanisms through
which they attenuate TLR signaling and the resulting
inflammation.
MATERIALS AND METHODS

Building structures of protein-protein interaction
complexes

We modeled the architectures of interaction complexes of the negative

regulators with the proteins in TLR pathway by exploiting PRISM (protein

interactions by structural matching) (13–15). PRISM is a knowledge-based

algorithm. It employs prior interface (template) data of known crystal/

NMR structures of protein complexes and predicts structures of novel

complexes that the target proteins can potentially form. It searches for

template interface motifs on the surface of the target proteins, taking

into account geometrical complementarities and hotspot conservation.

The inputs of PRISM are unbound protein structures and the template

interface data set. The outputs are structures of bound protein-protein

interaction (PPI) complexes. PRISM structurally aligns the interfaces

to query proteins first. Next, there comes a filtering step, where a combi-

nation of structural and evolutionary thresholds, i.e., root mean-square

deviation and number of matching hotspots, are applied. At the last

step, output models are scored and the flexibly refined to relieve possible

steric clashes by FiberDock (16). FiberDock assigns a binding energy

score by taking van der Waals interactions, partial electrostatics, and

hydrogen and disulfide bonds into account (16). An energy score

below �10 indicates a favorable interaction (14,17,18). PRISM is much

faster than classical docking tools and it achieved almost 100% success

in predicting the correct conformation of the complex structure (87 out

of 88 cases) (19).
Modeling of proteins with unknown structures

PRISM requires 3D structures of target proteins to model the complex

structures of the targets. If the structure of a given target protein is missing

from the Protein Data Bank (PDB), we model it by the I-TASSER server

(20). TIR domain structures of B-cell adaptor for PI3K (BCAP), single

immunoglobulin IL-1R-related molecule (SIGIRR), and ST2 have not

been resolved yet. We built a model of BCAP TIR domain (10–144 resi-

dues). The template structures used to build the BCAP TIR domain struc-

ture are 3h16A (crystal structure of a bacteria TIR domain, PdTIR from

Paracoccus denitrificans), 3ub2A (TIR domain of Mal/TIRAP), 4lqcA

(the crystal structures of the Brucella protein TcpB and the TLR adaptor

protein TIRAP show structural differences in microbial TIR mimicry),

and 4c6sA (crystal structure of the TIR domain from the Arabidopsis thali-

ana disease resistance protein RRS1). Sequence identities, coverage, and

normalized Z-scores between the query proteins and the templates are given

in Table S1 in the Supporting Material.

The SIGIRRTIR domain structure was also missing in the PDB. We built

its model (163–310 residues) and the template used is 1t3gA (TIR domain

of human IL-1RAPL).

We also modeled the ST2 TIR domain (375–558 residues) and the

templates are 1t3gA, 3j0aA (homology model of human TLR5 fitted into

an electron microscopy single-particle reconstruction), and 1fyvA (TIR

domain of human TLR1).

Finally, we built a model of the TLR4 TIR domain. The templates are

1fyvA, 3j0aA, and 1fyxA (TLR2 TIR domain).
Mapping clinically observed mutations onto the
interfaces of negative regulators and in silico
mutagenesis

We obtained clinically observed mutation data from the cBioPortal for

Cancer Genomics (The Cancer Genome Atlas, TCGA) (21). The residue

numbers in the pdb files are corrected according to the FASTA sequences.

We mapped the mutations onto the structures of negative regulators and

performed in silico mutagenesis by the MutateAminoAcid function of

the Discovery Studio molecular visualizer (Discovery Studio 3.5, Accelrys,

San Diego, CA), for the ones that fall onto the interface residues or the first
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neighbors of interface residues.We identified interface residues and hotspots

by theHotRegion database, which uses conservation, accessible surface area

and pair potentials (22). We reran PRISMwith the mutant protein structures

to checkwhether themutation abolishes the interaction. If interactions of the

mutant structures have a binding energy score higher than that of the wild-

type, we then conclude that this mutation is destabilizing. We calculated

the number of hydrogen bonds and salt bridges in complexes with both

wild-type and mutant structures by using the PDBePISAweb server (23).
RESULTS AND DISCUSSION

Through cooperative cellular network linkages, multivalent
oligomeric proteins display efficient enzymatic reactions
and amplify signal (24,25). These large protein assemblies
are formed either by direct PPIs or by Ub chains attached
to proteins that serve as a dynamic, allosteric scaffold.
These scaffolds not only bring proteins together; the shifting
landscape that they orchestrate preorganizes the ensembles
for subsequent binding and catalytic events (26). The signal
that these elicit propagates across the network (27). Cells
acquired strategies to block cellular functions such as
inflammation by targeting proteins, PPIs, and Ub chains.
At almost each step of the TLR signaling cascade, one
or more regulators take action to constrain NF-kB activa-
tion. In addition, parallel downstream paths also restrict
inflammation because they compete with the conventional
MyD88-dependent proinflammatory pathway (10) (Fig. 2).
Below, we describe the negative regulators focusing on
the structural basis of how they forestall signaling.
TIR domain-containing negative regulators

Upon stimulation, TLRs dimerize and recruit TIR domain-
containing adaptors to form either MyD88- or TRIF-depen-
Biophysical Journal 109(6) 1214–1226
dent TIR domain signalosomes. In our recent study (10), we
have provided structural models for these two signalosomes.
We showed that they are competitive and cannot form
simultaneously on the same receptor dimer. Apart from
Mal, MyD88, TRAM, and TRIF, there are also other TIR
domain-containing proteins, which act as negative regu-
lators of TLR signaling. These include BCAP (5), SIGIRR
(28), and ST2 (29), which are suggested to interfere with
the assembly of TIR domain signalosome. Below, we
explain the regulation mechanism of these three TIR domain
containing negative regulators structurally and provide
models for how they impede TLR signaling.
BCAP

Besides MyD88- and TRIF-dependent downstream paths,
the PI3K pathway can also be activated upon TLR stimula-
tion and serve as another parallel pathway of TLRs (5,30).
Although the mechanism of TLR-mediated proinflamma-
tory NF-kB and MAPK activation has been investigated
extensively, the stimulation mechanism of PI3Ka, a lipid
kinase, is still unknown (6). BCAP is a TIR domain-contain-
ing adaptor protein that links TLRs to PI3K/Akt pathway
(6). BCAP needs to be tyrosine-phosphorylated at its
YXXM motif to interact with the SH2 domain of the regu-
latory subunit (p85) of PI3Ka (3,5). TLR activation in-
creases the phosphorylated BCAP in the membrane, which
helps recruit activated PI3K to the membrane where its
lipid substrate, phosphoinositide-4,5-bisphosphate, is found
(5). If TLR is stimulated and the BCAP level is low, elevated
expression of proinflammatory cytokines, such as IL-12 and
IL-6, ensues (5–7). Although full-length BCAP (BCAP-L)
FIGURE 2 The competition in the TLR pathway

due to overlapping binding sites. Most of the nega-

tive regulators and the proteins that lead to distinct

parallel paths of TLRs compete with one another

to bind to a common partner. The TIR domain-con-

taining proteins all compete to bind to each other;

IRAK4 and FADD compete to bind to overlapping

interfaces on DD of MyD88; TRAF6 and TRAF3

have shared interfaces on MyD88-DD. Deubiqui-

tinases, such as A20, CYLD, and DUBA removes

Ub chains from TRAF6 and TRAF3. To see this

figure in color, go online.
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can bind to both Mal and MyD88 and suppress NF-kB activ-
ity, truncated BCAP (BCAP-S) that lacks TIR domain is
unable to do so (3,6), suggesting that its TIR domain is
critical for TLR regulation. BCAP recruitment and the
resulting PI3K activation serve as a checkpoint to limit
TLR-induced inflammation (5). BCAP represses MyD88-
dependent NF-kB and MAPK activation and there might
be two different scenarios for this: in the first, BCAP inter-
feres with the TIR domain signalosome (6,31). In the
second, BCAP may allow signalosome formation and func-
tion downstream of MyD88 but still interfere with the
conventional downstream NF-kB pathway; because Akt is
not activated in the absence of MyD88 in macrophages (6)
and MyD88 is vital for the recruitment of PI3K p85 regula-
tory subunit (30).

Our results show that the TIR domain of BCAP can form
potential complexes with all TIR-domain-containing pro-
teins in TLR signaling, including TLR4, Mal, MyD88,
TRAM, and TRIF (Fig. 3). The details of each of the inter-
action architectures are given in Tables 1 and S2. Some of
these interactions interfere with TIR domain signalosome
FIGURE 3 BCAP interactions with all TIR domain-containing proteins in TL

TLR4-Mal interaction, Mal-dimerization, and the entire MyD88-dependent si

with TLR4-TRAM binding therefore these two interactions are mutually exclus

action with Mal hinders its dimerization and the assembly of MyD88-dependen

mation. (e) BCAP-TRAM interaction interferes with TRAM-dimerization and p

blocks TRIF-TRAM interaction due to overlapping binding sites. Red boxes indic

red-labeled regions are the BB-loops of the proteins. In all parts, the left-hand si

right-hand side schematic figure shows the TIR domain signalosome and how the

matics represent the TIR domains: cyan represents TLR, yellow represents Mal, p

and orange represents BCAP. To see this figure in color, go online.
formation, supporting the first scenario. For instance, if
BCAP binds to TLR4, it abolishes TLR4-TRAM interaction
due to steric clash of BCAP and TRAM, preventing TRIF-
dependent signal relay (Fig. 3 b). Moreover, if it binds to
Mal, due to overlapping binding sites the Mal-BCAP inter-
action prevents Mal homodimerization, which is vital for
MyD88-dependent signalosome formation (32) (Fig. 3 c).
Similar to MyD88, TRIF can also mediate PI3K acti-
vation (33), but the IL-10 level does not change in the
absence of BCAP (5). BCAP-TRAM interaction abrogates
TRAM homodimerization (Fig. 3 e), which facilitates
TRIF recruitment by serving as a binding platform (34)
and the BCAP-TRIF association disrupts TRAM-TRIF
interaction (Fig. 3 f).

In addition to interfering with the formation of TIR-
domain signalosome, our results indicate that the second
scenario is also plausible. For instance, BCAP-TLR4
enables MyD88-dependent signalosome formation, as it
does not abolish TLR4-dimerization or TLR4-Mal interac-
tion (Fig. 3 a). Moreover, the interaction of BCAP with
MyD88 does not intrude into MyD88-dimerization interface
R signaling. (a) BCAP interaction with TLR4 allows TLR4 dimerization,

gnalosome formation. (b) BCAP interaction with TLR4 has steric clash

ive: if BCAP binds to TLR4, TRAM cannot bind to TLR4. (c) BCAP inter-

t signalosome. (d) BCAP-MyD88 interaction enables the signalosome for-

revents TRIF-dependent signalosome assembly. (f) BCAP-TRIF interaction

ate the location of clash and therefore those complexes are not possible. The

de figure shows the structure of PPI complexes obtained by PRISM, and the

negative regulators affect the assembly of signalosome. Circles in the sche-

urple represents MyD88, light pink represents TRAM, blue represents TRIF
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TABLE 1 Details of interactions that are predicted by PRISM

PPI Protein1 Protein2

Template

Interface

Interaction

Energy Reference

BCAP-TLR4 model model 3dahAB �46.7

BCAP-Mal model 4lqdA 3urrAB �57.21 (6)

BCAP-MyD88 model 4eo7A 3f1rAB �39.95 (6,30)

BCAP-TRAM model 2m1wA 3bdvAB �27.05

BCAP-TRIF model 2m1xA 3dhxAB �29.97 (33)

SIGIRR-TLR4 model model 3imoBD �22.7 (7,38–40)

SIGIRR-Mal model 4fz5A 1unhBE �36.06

SIGIRR-MyD88 model 4domA 3f13AB �27.84 (39,40)

SIGIRR-TRAM model 2m1wA 1pzmAB �11.38

SIGIRR-TRIF model 2m1xA 1ntcAB �21.38 (43,44)

ST2L-TLR4 model model 2bq1EF �16.67 (40)

ST2L-Mal model 3ub2A 3urrAB �40.66 (29)

ST2L-MyD88 model 4eo7A 2oh1CD �18.47 (29,39,40)

ST2L-TRAM model 2m1wA 3sf8AB �43.48

ST2L-TRIF model 2m1xA 3grzAB �22.39

TRAF6-p62 2k0bX 3hctA 3jygAB �12.09 (67)

p62-CYLD 1q02A 1whmA 2yvzAB �20.64 (61,63,64)

TRAF6-CYLD 1whlA 3hcuA 2ekyBD �21.28 (62)

TRAF6-A20 3hcsA 3zjgB 1f5qAB �32.08 (56)

A20 dimer 2vfjB 2vfjC 3dkbCF �48.57 (54)

TRAF3-DUBA 3tmp 1fllA 2a6aAB �16.29 (70)
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and allow signalosome formation (Fig. 3 d). Therefore, if
BCAP does not disrupt signalosome formation and func-
tions downstream of MyD88, how does it inhibit NF-kB?
Because BCAP is a large protein (811 residues), it was
suggested that it may interfere with the formation of the
myddosome structure, which is composed of death domains
(DDs) of MyD88, IRAK4, and IRAK2/1 (35). Our results
indicate that when MyD88 binds to BCAP through its
TIR domain, it may not be able to oligomerize with other
MyD88 and IRAK molecules through its DD due to steric
clash that BCAP may cause. Assembly into large complexes
and receptor clustering has been shown to activate signaling
cascades even in the absence of essential ligands (36), prob-
ably via allosteric activation.

Structural details of the interactions allow us to charac-
terize the mechanisms of oncogenic mutations. We mapped
the clinically observed cancer mutations onto interfaces
of the PPI architectures that we generated and performed
in silico mutagenesis. There are 12 oncogenic mutations
on BCAP that fall onto the interface residues (Table 2).
Our in silico mutagenesis analysis revealed that seven
of these mutations abolish BCAP interactions with either
one of five TIR domain-containing proteins (TLR4, Mal,
MyD88, TRAM, and TRIF). These mutations are observed
in melanoma, breast, lung, head and neck, colorectal and
stomach cancers. They do not cluster at a specific location
on the BCAP structure; rather they disperse almost
over the entire BCAP structure (Fig. S1). A recent study
showed that disease-causing mutations often change the
number of hydrogen-bonds and salt bridges in comparison
to nondisease-causing counterparts (37). In line with this,
we found that the E50K mutation on BCAP decreased
Biophysical Journal 109(6) 1214–1226
the number of intermolecular H-bonds by 1 and salt bridges
by 2 in the BCAP-TLR4 interaction. Moreover, K139fs
frameshift mutation reduced the number of salt bridges
from seven to four in the BCAP-TRAM interaction. These
decreases in intermolecular bonds may also contribute to
loss of the interaction with the mutant BCAP. Additionally,
there is also a nonsense mutation (G9*) on BCAP seen
in stomach cancer (Table S3) that causes the loss of
BCAP and its interactions. Attenuation of the interactions
liberates the conventional TLR downstream pathway that
leads to NF-kB and MAPK activation and proinflamma-
tory cytokine production. Without a checkpoint to restrict
TLR signaling, constitutive production of inflammatory
cytokines leads to chronic inflammation, which promotes
tumorigenesis.
SIGIRR

An orphan receptor SIGIRR (also known as TIR8) has a sin-
gle extracellular immunoglobulin domain, a transmembrane
domain, a cytoplasmic TIR domain, and an unusually long
tail (95 residues), which is missing in other TIR domain-
containing receptors (7,38,39). SIGIRR inhibits NF-kB
activation induced by only TIR domain-containing recep-
tors, like TLR and IL-1R1, but not the others such as tumor
necrosis factor receptor that do not possess a TIR domain
(7). Increased production of inflammatory cytokines and
chemokines has been reported in SIGIRR-deficient mice af-
ter IL-1 and LPS administration (28). Mice lacking SIGIRR
have been shown to be more prone to develop intestinal
tumors (39). The mechanism of inhibition of TLRs by
SIGIRR remains unclear (40). Although its extracellular
immunoglobulin and intracellular TIR domains restrain
IL1 signaling by blocking the interaction between IL-1R1
and IL-1RAP, only its TIR domain inhibits TLR signaling
(41). In particular, the BB-loop of its TIR domain appears
important in association with TLRs, because deletion of
the BB-loop abolished the inhibitory role of SIGIRR
(39,42). The BB-loop is conserved among TIR domain-con-
taining proteins (34).

SIGIRR could either interfere with the organization of
TIR domain signalosome (39–41) or block the translocation
of this complex from the receptor (28). It can form hetero-
dimers with TLR4 (40) and decrease the recruitment of
MyD88 and IRAK4 to activated TLR4 (41). We found
that SIGIRR can interact with all TIR domain-containing
proteins in the TLR pathway (Fig. 4). SIGIRR’s BB-loop
is not involved in its interactions with Mal and TRAM,
but close to the interface region in the MyD88, TLR4, and
TRIF interactions. Similar to BCAP, SIGIRR interactions
with Mal, TRAM, and TRIF interfere with Mal-homodime-
rization (Fig. 4 c), TRAM-homodimerization (Fig. 4 e),
and TRIF-TRAM (Fig. 4 f) interactions, respectively;
hence, they prevent the signalosome assembly. In addition
to the MyD88-dependent pathway, SIGIRR also modulates



TABLE 2 Details of clinically observed mutations on negative regulators of TLRs

Cancer Study Mutation

Mutation

Type Protein Interface of PPI Disrupted PPI

Energy

Score

Difference of

Energy Scores

Melanoma (TCGA) G48S missense BCAP BCAP-TLR4 none �40.33 6.37

NCI-60 E50K missense BCAP BCAP-TLR4 BCAP-TLR4 �8.9 37.8

Melanoma (Broad) P82L missense BCAP BCAP-TLR4 BCAP-TLR4 �7.7 39

Melanoma (Yale) D113H missense BCAP BCAP-TLR4, BCAP-TRAM none �13.0 33.7

�16.97 10.08

Breast (TCGA pub) E21K missense BCAP BCAP-Mal, BCAP-TRIF BCAP-TRIF �25.16 32.05

�9.26 20.71

Lung squ (TCGA) L27Q missense BCAP BCAP-Mal, BCAP-TRIF BCAP-TRIF �51.4 5.81

�1.18 28.79

Uterine (TCGA) V134M missense BCAP BCAP-Mal none �44.24 12.97

Head & neck (Broad) A136D missense BCAP BCAP-Mal BCAP-Mal none none

Melanoma (Broad) L60F missense BCAP BCAP-MyD88 none �41.88 -1.93

Colorectal (Genentech) C66Y missense BCAP BCAP-MyD88 BCAP-MyD88 12.12 52.07

Stomach (TCGA pub) K139fs FS del BCAP BCAP-TRAM BCAP-TRAM �4.87 22.18

Head & neck (TCGA) S39N missense BCAP BCAP-TRIF none �11.92 18.05

pRCC (TCGA) L282M missense SIGIRR SIGIRR-Mal, SIGIRR-TRIF SIGIRR-TRIF �33.01 3.05

�9.84 11.54

Cervical (TCGA) S297F missense SIGIRR SIGIRR-Mal none �22.88 11.18

Breast (TCGA) Y377N missense ST2 ST2-TLR4 none �11.99 4.68

Melanoma (TCGA) P384Q missense ST2 ST2-TLR4 ST2-TLR4 �5.45 11.22

Melanoma (TCGA) P406L missense ST2 ST2-TLR4 none �12.45 4.22

Melanoma (Yale) E410K missense ST2 ST2-TLR4 none �14.96 1.71

Lung adeno (TCGA pub) L425Q missense ST2 ST2-TLR4 ST2-TLR4 2.06 18.73

Melanoma (TCGA),

Melanoma (Yale)

R439Q missense ST2 ST2-TLR4 none �19.3 -2.63

Stomach (TCGA) E226K missense CYLD CYLD-p62 none �20.38 0.26

Melanoma (TCGA) P229S missense CYLD CYLD-p62 none �18.34 2.3

Head & neck (TCGA) N300S missense CYLD CYLD-p62 none �15.82 4.82

Uterine (TCGA) I303V missense CYLD CYLD-p62 CYLD-p62 none none

Lung adeno (TCGA) A305S missense CYLD CYLD-p62 none �16.7 3.94

ccRCC (TCGA) P130T missense CYLD CYLD-TRAF6 none �10.35 10.93

Uterine (TCGA) L186R missense CYLD CYLD-TRAF6 none �13.92 7.36

Energy score below �10 indicates favorable interaction. If the difference of energy scores between mutant and wild-type is positive, the mutation is then

destabilizing.
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the TRIF-dependent pathway, because it also inhibits TLR3
signaling (43,44), which signals only through TRIF, but not
MyD88. The architectures suggest that the mechanism of
this inhibition is by SIGIRR blocking TRAM-homodimeri-
zation (Fig. 4 e), TLR4-TRAM (Fig. 4 b), and TRIF-TRAM
(Fig. 4 f) interactions.

TLR4-SIGIRR (Fig. 4 a) and MyD88-SIGIRR (Fig. 4 d)
architectures are feasible with the MyD88-dependent sig-
nalosome formation. Although it has been proposed to hind-
er MyD88 homodimerization (39,40), which is vital for
myddosome formation (45,46), our model suggests that
it abolishes neither MyD88-dimerization nor signalosome
organization. Therefore, if TLR4 or MyD88 are the proteins
that SIGIRR interact with and they do not interfere with
the signalosome, how does it hinder the transmission of
the signal from TLR4 to NF-kB? The answer could lie
in the inhibition of the translocation of this complex from
the receptor (28). This strategy is also used by other negative
regulators of TLRs, such as IRAK-M, which prevents the
dissociation of the myddosome structure from the receptor
complex (8,47).
SIGIRR has only two clinically observed oncogenic mu-
tations in the interface (Table 2). Only one of the mutations
(L282M) falls on the SIGIRR-Mal and SIGIRR-TRIF inter-
faces and it abrogated the SIGIRR-TRIF interaction. It also
has a nonsense mutation (Q111*) and a frameshift mutation
(P2fs) (Table S3) that produce truncated SIGIRR lacking a
TIR domain and abolish its interactions presented here.
ST2 (ST2L)

ST2 (IL1RL1) is also an orphan receptor with a cytoplasmic
TIR domain (7). It inhibits NF-kB activation in response
to IL-1R1 and TLR stimulation (29). Overexpression of
ST2 prevents activation by TLR4- but not TLR3-induced
NF-kB (TLR3 uses only a TRIF-dependent downstream
path). In addition, ST2 coimmunoprecipitates with Mal
and MyD88, but not with TRIF (29). This suggests that
ST2 has inhibitory roles only in the MyD88-dependent
pathway of TLRs.

As with other TIR domain-containing regulators, we
obtained possible interaction models of ST2 with all
Biophysical Journal 109(6) 1214–1226



FIGURE 4 SIGIRR interactions with all TIR domain-containing proteins in TLR signaling. (a) SIGIRR interaction with TLR4 allows TLR4 dimerization,

TLR4-Mal interaction, Mal-dimerization, and the entire MyD88-dependent signalosome formation. (b) SIGIRR-TLR4 interaction has steric clash with

TLR4-TRAM binding therefore these two interactions are mutually exclusive: if SIGIRR binds to TLR4, TRAM cannot bind to TLR4. (c) SIGIRR inter-

action with Mal hinders its dimerization and the assembly of MyD88-dependent signalosome. (d) SIGIRR-MyD88 interaction enables the signalosome for-

mation. (e) SIGIRR-TRAM interaction interferes with TRAM-dimerization and prevents TRIF-dependent signalosome assembly. (f) SIGIRR-TRIF

interaction blocks TRIF-TRAM interaction due to overlapping binding sites. Red boxes indicate the location of clash. The red-labeled regions are the

BB-loops of the proteins. In all parts, the left-hand side figure shows the structure of PPI complexes obtained by PRISM, and the right-hand side schematic

figure shows the TIR domain signalosome and how the negative regulators affect the assembly of signalosome. Circles in the schematics represent the TIR

domains: cyan represents TLR, yellow represents Mal, purple represents MyD88, light pink represents TRAM, blue represents TRIF and green represents

SIGIRR. To see this figure in color, go online.
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TIR domain-containing proteins in TLR signaling (Fig. 5).
Although its interactions with TLR4 (Fig. 5 a), MyD88
(Fig. 5 d), and TRAM (Fig. 5 e) allow homodimerization
of these proteins, its interactions with Mal and TRIF
abolish Mal-homodimerization (Fig. 5 c) and TRAM-
TRIF interaction (Fig. 5 f). Although it may not interact
with TRAM or TRIF under physiological conditions
(another protein may prevent the association or the pro-
teins may not be coexpressed), PRISM still finds these
interactions.

In mice, ST2 loses its inhibitory action in a proline-to-his-
tidine mutation at position 431 of its TIR domain (7,29).
This residue corresponds to P426 in the human homolog.
P426 is found at the BB-loop of ST2, which is estimated
by alignment of the ST2 structure with other TIR domains.
This residue is on the TLR4-ST2 and TRIF-ST2 interfaces
(Fig. 6) and the P426H mutation abolishes TLR4-ST2 inter-
action. In addition to this mutation, there are six oncogenic
mutations on the interfaces of ST2 (Table 2) and two of
them impede the ST2-TLR4 interaction. There are also eight
nonsense and frameshift mutations on ST2 (Table S3), lead-
Biophysical Journal 109(6) 1214–1226
ing to loss of the TIR domain and all interactions with the
TIR-containing proteins.
Ubiquitinases and deubiquitinases as regulators
of TLR signaling

Ubiquitination is a reversible posttranslational modifica-
tion and it is one of the most prevalent in TLR signaling
and NF-kB activation (48), like phosphorylation (49,50).
Different ubiquitination modes may result in opposing out-
comes, like degradation or signaling of TRAF3 (51). Ub
chains serve as an anchor, assisting in the assembly of large
protein complexes. For instance, the K63-linked Ub chain
attached to TRAF6 recruits TAB2/3 and NEMO (IKK-g);
however, these proteins do not associate directly with
TRAF6 itself. Because NF-kB activation depends on ubiqui-
tination, evolution developed Ub-dependent regulation to
abate inflammation (52). Some of the negative modulators
of the TLR pathway are ubiqutinases that add K48-linked
Ub chains to essential orchestrators. TRIAD3A catalyzes
the K48-linked ubiquitination and leads to proteosomal



FIGURE 5 ST2 interactions with all TIR domain-containing proteins in TLR signaling. (a and b) ST2 interaction with TLR4 allows TLR4 dimerization,

Mal-dimerization, and TRAM dimerization and the formation of bothMyD88- and TRIF-dependent signalosomes. (c) ST2-Mal interaction hinders its dimer-

ization and the assembly of Myd88-dependent signalosome. (d) ST2-MyD88 interaction enables the signalosome formation. (e) ST2-TRAM interaction

interferes with TRAM-TRIF. (f) ST2-TRIF interaction blocks TRIF-TRAM interaction due to overlapping binding sites. Red boxes indicate the location

of clash. The red-labeled regions are the BB-loops of the proteins. In all parts, the left-hand side figure shows the structure of PPI complexes obtained

by PRISM, and the right-hand side schematic figure shows the TIR domain signalosome and how the negative regulators affect the assembly of signalosome.

Circles in the schematics represent the TIR domains: cyan represents TLR, yellow represents Mal, purple represents MyD88, light pink represents TRAM,

blue represents TRIF and dark gray represents ST2. To see this figure in color, go online.
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degradation of Mal and TRIF (48); and Nrdp1 adds K48-Ub
to MyD88, inhibits the MyD88-dependent TLR pathway
and preferentially enhances TRIF-dependent IFN expression
(53). Some others are deubiquitinases (DUBs), such as A20
(also known as TNFAIP3), CYLD (cylindromatosis D),
and DUBA (deubiquitinating enzyme A), which negatively
FIGURE 6 P426 residue of ST2 is at the inter-

face of its interactions with (a) TLR4 and (b)

TRIF. P426H mutation abolishes TLR4-ST2 inter-

action. The red-labeled regions are the BB-loops

of the proteins. To see this figure in color, go on-

line.
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modulate TLR signaling by removing the K63-linked Ub
chains from proteins, such as TRAF6 and TRAF3 (48).
Below we demonstrate that these key DUBs turn off TLR
signaling because they prevent the binding of TRAF6 and
TRAF3 to their partners in addition to removing their Ub
chains.
A20

A20 is a pleiotropic Ub editing enzyme: it has an N-termi-
nal ovarian tumor (OTU) domain with DUB activity, and
seven C-terminal zinc finger domains (ZF)—the fourth
(ZF4) with E3 ligase activity (54,55). Although it is a
DUB, it also catalyzes the addition of K48-linked Ub
chains (56,57). It antagonizes TLR- and tumor necrosis
factor receptor-mediated NF-kB activation (57). TRAF6
is a substrate for A20 in the TLR pathway (48). A20 was
also proposed to inhibit the association of TRAF6 (E3)
with Ubc13 (E2) and UbcH5c (E2) (56). A20 forms homo-
dimers through the ZF4 domains and its higher-order olig-
omerization facilitates its deubiquitinase, E3 ligase and
Ub-binding functions (54). The A20 homodimer structures
in the asymmetric unit of two pdb entries (3dkb_CF and
2vfj_BC) were suggested to be biological because mutation
of the interface residues (M15A, R16E, and H351A) sup-
pressed A20-dimerization (54). We obtained similar homo-
dimer with PRISM (Fig. S2 a).

We found interactions between the RING domain of
TRAF6 and the OTU domain of A20 (Fig. 7) and this archi-
tecture also allows A20 homodimerization (Fig. S2 b). A20-
TRAF6 interaction abolishes TRAF6-Ubc13 as proposed
earlier (56,57), because they have overlapping binding
Biophysical Journal 109(6) 1214–1226
sites on TRAF6. C103, H256, and T97 residues on A20
were determined to be the catalytic residues (57). The
C103A mutation inhibits A20 catalytic function (C103A
mutant of A20 was unable to deubiquitinate TRAF6) (57)
and TRAF2-Ubc13 interaction (58). However, this residue
is not on the interface of TRAF6-A20 that we obtained.
This result is expected because C103A mutant of A20
was shown to still bind to TRAF6 (59). The reason for the
blockage of TRAF2-Ubc13 interaction may be that the
C103 residue is involved in the interface of TRAF2-A20
complex; alternatively, mutation of this residue disrupts
the stability of A20 and allosterically modifies its interac-
tion sites. In addition to inhibition of E2-E3 interactions,
A20 has also roles in degradation of E2 proteins (e.g.,
Ubc13) by attaching K48-linked Ub chains to E2, thus
affecting E2-dependent E3 function (60). We could not
find clinically observed oncogenic mutations on A20 that
fall onto A20-TRAF6 interface residues or nonsense/frame-
shift mutations that lead to truncated A20 without OTU
domain the TCGA database.
CYLD

CYLD is a Ub-specific protease with a tumor suppressive
role. It removes K63-linked Ub chains from TRAF6 (48)
and negatively regulates NF-kB and expression of proin-
flammatory cytokines (61,62). To date, its NF-kB inhibition
mechanism has been unclear. CYLD interacts with TRAF6
(62), but it was also suggested to require some bridging
adaptor proteins, like p62 (also known as sequestosome1)
to interact with its substrates because its activity is reduced
in the absence of p62 (61,63,64).
FIGURE 7 A20 interaction with TRAF6. (a)

OTU domain of A20 interacts with RING domain

of TRAF6. (b) Ubc13 and A20 have almost

completely overlapping interfaces on TRAF6 and

hence their interactions with TRAF6 are mutually

exclusive. Red square indicates the location of

clash. TRAF6-Ubc13 interaction is obtained from

crystal structure (3hcu_AB). (c) TRAF6-dimer

through its RING domain and its interactions

with A20 and Ubc13. To see this figure in color,

go online.



Regulation of TLR-Meditated Inflammation 1223
We found TRAF6 interactions with CYLD either via
direct binding or via p62 (Fig. 8, a and b). CYLD has
three CAP-Gly (cytoskeleton-associated protein-glycine
conserved) domains with similar global folds. The third
is suggested to interact with TRAF2 (65,66). As to direct
interaction, we found that the first CAP-Gly domain of
CYLD binds to the RING domain of TRAF6. However,
in the p62 adaptor case, the second CAP-Gly domain of
CYLD interacts with p62, which interacts with TRAF6.
Residues 225–255 of p62 were already identified as an
interface that binds to TRAF6 (67) and this is in agree-
ment with our TRAF6-p62 complex architecture. Both
the direct and indirect (through p62) associations steri-
cally hinder the TRAF6-Ubc13 interaction (Fig. 8, c
and d). If p62-CYLD or CYLD-itself binds this interface
on TRAF6, Ubc13 cannot approach that site and TRAF6
is nonfunctional.

Why does TLR negative regulation have redundant
players with the same function and the same substrate
(TRAF6 with K63-Ub chain), such as A20 and CYLD?
The timing of their action may address this question:
CYLD is constitutively expressed, but A20 is not (61).
Alternatively, they may act in distinct cell types, or subcel-
lular locations (68). They may also cooperate to remove the
Ub chains from TRAF6.

Seven missense mutations on CYLD correspond to the
interface residues, but only one of them causes the loss of
its interactions (p62-CYLD) according to our results (Ta-
ble 2). Additionally, there are also six nonsense or frameshift
mutations that lead to truncated protein without CAP-Gly or
DUB domains (Table S3). Because these mutations cause
loss of the domains that are required for CYLD-TRAF6 or
CYLD-p62 interactions, the truncated CYLD can no longer
associate with these proteins and deubiquitinate TRAF6.
Nonsense and frameshiftmutations predominantly constitute
the mutations of CYLD in tumors (59,69).
DUBA (OTUD5)

Similar to A20, DUBA (also known as OTUD5) is also an
OTU domain family member cysteine protease. It sup-
presses IFN-I production in response to TLR activation by
removing K63-Ub chains from TRAF3 and preventing
recruitment of TBK1 and other downstream proteins, which
are necessary for NF-kB and IRF activation (48,51,70).
Interaction of endogenous TRAF3 and DUBA takes place
upon TLR3 stimulation (70). The D221, C224, and H334
are the catalytic residues of DUBA and C224S mutation
on DUBA compromised its function (deubiquitinating
TRAF3) (70). There is less Ub alteration in TRAF3 lacking
a RING domain (70), indicating that the RING domain
of TRAF3 is probably the interaction region. However, we
could not find interaction between the RING domain of
TRAF3 and catalytic OTU domain of DUBA. Instead, we
found interaction with concave site on TRAF-C region
of TRAF3 (Fig. 9). This concave region is where TRAF3
interacts with CD40 (1fll.pdb) (71), BAFFR (2gkw.pdb)
(72), LMP1 (1zms.pdb) (73), Cardif (4ghu.pdb) (74), and
also MyD88 (10). If DUBA also binds to TRAF-C region
in addition to the RING domain of TRAF3, it attenuates
TLR-induced IRF activation not only through its catalytic
(DUB) function, but also through interfering with the
TRAF3 interactions with other signaling proteins. There
are no clinically observed oncogenic mutations on
DUBA that fall onto DUBA-TRAF3 interface residues or
nonsense/frameshift mutations.
FIGURE 8 Architectures of direct and indirect

interactions of TRAF6 with CYLD. (a) Indirect as-

sociation of TRAF6 with CYLD through p62

bridging adaptor. (b) Direct interaction of TRAF6

with CYLD. (c) In the p62 case, both p62 and

CYLD has steric clashes with Ubc13. (d) In the

direct binding, CYLD has steric clash with

Ubc13. Red squares indicate the location of clash.

TRAF6-Ubc13 interaction is obtained from crystal

structure (3hcu_AB). To see this figure in color, go

online.
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FIGURE 9 The architecture of the interaction

between the OTU domain of DUBA and TRAF-C

domain of TRAF3. To see this figure in color, go

online.
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Parallel downstream paths of TLRs

The TLR pathway activates different parallel downstream
paths. The conventional downstream path of TLRs is
the MyD88-dependent path, which involves TRAF6 and
IRAKs to activate NF-kB and MAPK and to produce proin-
flammatory cytokines. There are also TRIF-dependent,
TRAF3-dependent, Fas associated death-domain protein
(FADD)-dependent, and BCAP-dependent paths, which
lead to production of IFNs apoptosis, or activation of the
PI3K pathway, respectively. Our recent study (10) suggests
that almost all parallel pathways of TLRs compete with each
other and thus restrict the activation of one another due to
overlapping binding sites on a common binding partner
(Fig. 2). These parallel paths only switch the function: while
negatively regulating one path, they positively regulate
others. The negative regulators covered in this study, except
BCAP, cease TLR signaling. Network flow algorithms
might be helpful to understand the interplay between paral-
lel paths in TLR pathway (75).
CONCLUSIONS

The TLR pathway resembles a double-edged sword: On the
one hand, it is vital for triggering proper host immune
response against pathogens and its malfunction makes
individuals more susceptible to infections. On the other,
its overactivation results in excess inflammation, which is
detrimental to the host. The cell has evolved several mech-
anisms to strike a balance between activation and inhibition
of TLR signaling at almost each step of the pathway.
Although several negative regulators have been identified,
their inhibition mechanisms remain elusive. Here, we pro-
vide the structural basis for the regulation of TLR signaling.
Overall, we observed that negative regulators tend to inter-
fere with the assembly of key signaling complexes, such as
TIR-domain signalosome, compete with proteins to bind to
their partners, and modify ubiquitination states and target
them for proteosomal degradation. Similarly, parallel down-
stream paths compete with each other and restrain their acti-
vation. Several oncogenic mutations on negative modulators
Biophysical Journal 109(6) 1214–1226
tend to disrupt their interactions with the key players in
TLR pathway, liberating the conventional downstream
path and constitutive activation of NF-kB. Better under-
standing of negative regulation of TLR signaling holds
promise for novel treatment strategies for autoimmune dis-
eases and cancer.
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51. Häcker, H., P. H. Tseng, and M. Karin. 2011. Expanding TRAF
function: TRAF3 as a tri-faced immune regulator. Nat. Rev. Immunol.
11:457–468.

52. Wullaert, A., K. Heyninck, ., R. Beyaert. 2006. Ubiquitin: tool
and target for intracellular NF-kappaB inhibitors. Trends Immunol.
27:533–540.

53. Wang, C., T. Chen, ., X. Cao. 2009. The E3 ubiquitin ligase Nrdp1
‘preferentially’ promotes TLR-mediated production of type I inter-
feron. Nat. Immunol. 10:744–752.

54. Lu, T. T., M. Onizawa, ., A. Ma. 2013. Dimerization and ubiquitin
mediated recruitment of A20, a complex deubiquitinating enzyme.
Immunity. 38:896–905.

55. Wertz, I. E., K. M. O’Rourke,., V. M. Dixit. 2004. De-ubiquitination
and ubiquitin ligase domains of A20 downregulate NF-kappaB signal-
ling. Nature. 430:694–699.

56. Catrysse, L., L. Vereecke, ., G. van Loo. 2014. A20 in inflammation
and autoimmunity. Trends Immunol. 35:22–31.

57. Lin, S. C., J. Y. Chung,., H. Wu. 2008. Molecular basis for the unique
deubiquitinating activity of the NF-kappaB inhibitor A20. J. Mol. Biol.
376:526–540.

58. Shembade, N., A. Ma, and E. W. Harhaj. 2010. Inhibition of NF-
kappaB signaling by A20 through disruption of ubiquitin enzyme com-
plexes. Science. 327:1135–1139.

59. Jung, S. M., J. H. Lee,., S. H. Park. 2013. Smad6 inhibits non-canon-
ical TGF-b1 signalling by recruiting the deubiquitinase A20 to TRAF6.
Nat. Commun. 4:2562.

60. Ma, A., and B. A. Malynn. 2012. A20: linking a complex regulator of
ubiquitylation to immunity and human disease. Nat. Rev. Immunol.
12:774–785.

61. Sun, S. C. 2010. CYLD: a tumor suppressor deubiquitinase regulating
NF-kappaB activation and diverse biological processes. Cell Death
Differ. 17:25–34.

62. Yoshida, H., H. Jono, ., J. D. Li. 2005. The tumor suppressor
cylindromatosis (CYLD) acts as a negative regulator for toll-like recep-
Biophysical Journal 109(6) 1214–1226
tor 2 signaling via negative cross-talk with TRAF6 AND TRAF7.
J. Biol. Chem. 280:41111–41121.

63. Seibenhener, M. L., J. R. Babu, ., M. W. Wooten. 2004. Sequesto-
some 1/p62 is a polyubiquitin chain binding protein involved in ubiq-
uitin proteasome degradation. Mol. Cell. Biol. 24:8055–8068.

64. Wooten, M. W., T. Geetha, ., J. Moscat. 2008. Essential role of se-
questosome 1/p62 in regulating accumulation of Lys63-ubiquitinated
proteins. J. Biol. Chem. 283:6783–6789.

65. Saito, K., T. Kigawa,., S. Yokoyama. 2004. The CAP-Gly domain of
CYLD associates with the proline-rich sequence in NEMO/IKK-
gamma. Structure. 12:1719–1728.

66. Zheng, C., Q. Yin, and H. Wu. 2011. Structural studies of NF-kB
signaling. Cell Res. 21:183–195.

67. Wooten, M. W., M. L. Seibenhener, ., J. Moscat. 2001. The atypical
protein kinase C-interacting protein p62 is a scaffold for NF-kappaB
activation by nerve growth factor. J. Biol. Chem. 276:7709–7712.
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Table S1: Sequence identities, coverage, and normalized Z-scores between the query 
proteins and the template structures. The normalized Z-score greater than 1 implies a 
good alignment (1) 

Query 
protein Template protein 

PDB_ID of 
template 

Sequence identity of 
query and template Coverage 

Normalized 
Z-score 

BCAP 
PdTIR from Paracoccus 
denitrificans 3h16A  0.22 0.93 1.23 

BCAP 
TIR domain of 
Mal/TIRAP 3ub2A 0.19 0.83 1.19 

BCAP 
Brucella protein TcpB 
TIR domain 4lqcA 0.21 0.86 1.13 

BCAP 

TIR domain from the 
Arabidopsis Thaliana 
disease resistance 
protein RRS1 4c6sA 0.22 0.95 1.06 

SIGIRR 
TIR domain of human 
IL-1RAPL 1t3gA  0.32 0.96 2.72 

ST2L 
TIR domain of human 
IL-1RAPL 1t3gA  0.35 0.89 2.53 

ST2L 

Homology model of 
human Toll-like 
receptor 5 fitted into an 
electron microscopy 
single particle 
reconstruction 3j0aA 0.22 0.87 3.5 

ST2L 
TIR domain of human 
TLR1 1fyvA 0.23 0.87 2.63 

TLR4 
TIR domain of human 
TLR1 1fyvA 0,39 0,97 2,76 

TLR4 

Homology model of 
human Toll-like 
receptor 5 fitted into an 
electron microscopy 
single particle 
reconstruction 3j0aA 0.29 0.99 3.68 

TLR4 TLR2 TIR domain 1fyxA 0.4 0.97 2.77 
 

 

 

 

Table S2: Details of interactions, namely the target and template structures, 
interaction energies obtained by PRISM and the references that show the physical 
interactions of the given protein pairs.  

PPI Protein1 Protein2 Template 
Interface 

Interface Residues on 
Protein1 

Interface Residues on 
Protein2 

BCAP-TLR4 
 
 
 
 
 

Model 
 
 
 
 
 

Model 
 
 
 
 
 

3dahAB 
 
 
 
 
 

H44, L46, G47, P48, 
E49, A50, S51, S53, 
A54, L57, Q76, H77, 
F78, K80, P81, A82, 
L83, P85, L86, L87, 
Q88, R89 

W686, E690, V692, K693, 
N694, E696, E697, G698, 
R709, D798, V800, L801, 
R803, H804, W807, R811 

BCAP-Mal 
 
 

Model 
 
 

4lqdA 
 
 

3urrAB 
 
 

E20, E21, Q24, Y25, 
Q27, T28, L29, L31, 
S32, Q35, I41, L42, 

L152, K158, M161, L162, 
L165, E167, P188, P189, 
E190, R192, F193, M194 
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    P129, E130, V133, A134 

BCAP-MyD88 
 
 

Model 
 
 

4eo7A 
 
 

3f1rAB 
 
 

A54, L57, S58, L61, S62, 
R64, R89, A90, F91, 
H92, P94, H95 

S209, E210, E213, K214, 
F235, K238, F239, K241, 
S242, L243, S244 

BCAP-TRAM 
 
 
 
 

Model 
 
 
 
 

2m1wA 
 
 
 
 

3bdvAB 
 
 
 
 

F91, H92, P93, P94, R96, 
V97, V98, L111, D116, 
A118, H119, W120, 
K138, A139, E142, D143 

E87, D88, T90, D91, L94, 
R95, V96, N98, L99, Q101, 
D102, D103, I111, E114, 
L176, N177, E197, E198, 
F202 

BCAP-TRIF 
 
 
 

Model 
 
 
 

2m1xA 
 
 
 

3dhxAB 
 
 
 

P17, D18, E20, E21, 
W22, Q24, Y25, Q27, 
T28, L31, S32, Q35, 
Q39, K40, I41, T43, R45 

R463, L464 L466, H467, 
N470, M473, M474, S475, 
L477, G481, P483, D502, 
T503, S505, L506, S508 

SIGIRR-TLR4 
 
 
 

Model 
 
 
 

Model 
 
 
 

3imoBD 
 
 
 

E209, L233, S234, R235, 
A236, C238, S239, S241, 
F242, R243, E244, P268, 
A269, A272, L275, Q278 

D685, N689, K693, N694, 
E697, V699, V800, L801, 
R803, H804, W807, R808, 
R811 

SIGIRR-Mal 
 
 
 

Model 
 
 
 

4fz5A 
 
 
 

1unhBE 
 
 
 

T260, R274, R277, 
Q278, R280, H281, 
V283, T284, L285, L286, 
L287, R289, D298, F299 

L152, P155, W156, K158, 
Y159, L162, T166, A185, 
A186, P188, P189, E190, 
R192 

SIGIRR-MyD88 
 
 
 

Model 
 
 
 

4domA 
 
 
 

3f13AB 
 
 
 

A208, E209, P210, S211, 
A212, S234, R235, 
A236, C238, S239, F242, 
R243, E244, A272, L275 

R218, P245, G246, A247, 
H248, Q249, K250, R251, 
L252, I253, I267, F270, 
I271, T272, L295, P296 

SIGIRR-TRAM 
 
 
 

Model 
 
 
 

2m1wA 
 
 
 

1pzmAB 
 
 
 

Q264, R265, R266, 
D267, H270, L273, 
R274, R277, L285, L286, 
L287, R289, P290, G291 

E87, D88, D89, T90, D91, 
E92, R95, F112, A113, 
E114, M115, H117, H121, 
L122, Q123, N177 

SIGIRR-TRIF 
 
 
 
 

Model 
 
 
 
 

2m1xA 
 
 
 
 

1ntcAB 
 
 
 
 

W237, C238, S241, 
F242, E244, C247, L250 
E251, P271, A272, L275, 
L276, Q278, H279, 
R280, H281 

A402, E429, N459, F460, 
D461, R463, L464, L466, 
H467, Q468, N470, S500, 
D502, S505, L506 

ST2L-TLR4 
 
 
 
 
 
 

Model 
 
 
 
 
 
 

Model 
 
 
 
 
 
 

2bq1EF 
 
 
 
 
 
 

L376, Y377, R385, 
Y387, E398, H402, 
D497, E410, N411, 
G414, T416, L417, 
C418, I419, G421, R422, 
D423, M424, L425, 
P426, K440 

S681, Q682, E684, D685, 
W686, N689, E690, L691İ 
K693, N694, Q738, H739, 
I768, L770, Q771, K772, 
V773, E774, L777, W796, 
D798, S799, V800, L801, 
R803, W807 

ST2L-Mal 
 
 
 
 

Model 
 
 
 
 

3ub2A 
 
 
 
 

3urrAB 
 
 
 
 

R385, Y387, S389, E398, 
H399, H402, Q403, I404, 
D407, E410, N411, I419, 
G421, R422, D515, 
N519, K520, R521, S522 

L152, Q153, P155, K158, 
Y159, L162, L165, T166, 
P188, P189, E190, R192, 
F193, M194 

ST2L-MyD88 
 
 
 
 

Model 
 
 
 
 

4eo7A 
 
 
 
 

2oh1CD 
 
 
 
 

R396, E481, M482, 
E483, A484, L485, S486, 
E487, E494, Q497, T509, 
I510, K511, R513, E514, 
H516, I517, K526 

L228, Q229, K231, D234, 
T237, L241, K262, E263, 
F264, P265, S266, I267, 
R269, F270 

ST2L-TRAM 
 
 
 

Model 
 
 
 

2m1wA 
 
 
 

3sf8AB 
 
 
 

F458, E461, Q462, E463, 
V464, H467, M490, 
L491, Q492, A495, 
L496, S499, L503 

D91, L94, R95, N98, L99, 
P175, L176, N177, P179, 
L180, P181, R184, E197, 
E198 

ST2L-TRIF 
 
 
 

Model 
 
 
 

2m1xA 
 
 
 

3grzAB 
 
 
 

P384, R385, Y387, 
K388, S389, A394, S395, 
E398, V401, H402, 
R422, L425, P426  

A402, V433, H434, S458, 
N459, F460, D461, R463, 
L466, H467, N470, Q471, 
Q498, S500, D502, L506 

TRAF6-p62 
 

2k0bX 
 

3hctA 
 

3jygAB 
 

E65, S66, E69, C70, P71, 
L74, H87, V107 

P387, A390, P392, R393, 
I395, E396, N421, Y422 

p62-CYLD 
 
 

1q02A 
 
 

1whmA 
 
 

2yvzAB 
 
 

A390, D391, L394, I395, 
L398, L402, E409, G410, 
G411, T414, L417, 

S223, S225, P229, L230, 
N300, I303, P304, E305, 
S306, S307, G308, P309 
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    Q418, T419 

TRAF6-CYLD 
 
 

1whlA 
 
 

3hcuA 
 
 

2ekyBD 
 
 

P62, P63, E65, S66, P71, 
H87, K104, C105, P106, 
V107, D108, N109 

V127, P130, R147, Q185, 
L186, F187, Q188, S207, 
G206, P209, S210 

TRAF6-A20 
 
 
 
 

3hcsA 
 
 
 
 

3zjgB 
 
 
 
 

1f5qAB 
 
 
 
 

Q54, D57, P71, I72, C73, 
L74, M75, C93, D100, 
A101, G102, K104, 
C105, P106, V107, 
D108, N109, P135 

K20, R24, T42, R45, Y46, 
Q241, Y244, D331, N334, 
P336, K337, E338, I339,  

A20 dimer 
 
 

2vfjB 
 
 

2vfjC 
 
 

3dkbCF 
 
 

P7, L12, S13, N14, M15, 
R16, V19, R22, E23, 
D119, D344, L348, H351 

P7, L12, S13, N14, M15, 
R16, V19, R22, E23, D119, 
D344, L348, H351, E352 

TRAF3-DUBA 
 
 
 

3tmp 
 
 
 

1fllA 
 
 
 

2a6aAB 
 
 
 

H470, R505, R506, 
L508, G509, D510, 
F537, V538, A539, 
T541, V542, N545, G546 

M191, D192, T195, Q198, 
W202, K205, Y301, T303, 
G304, T305, S306 

 
 

 

 

Figure S1: Clinically observed BCAP mutations that fall onto interfaces of BCAP 
interactions with other TIR domain-containing proteins. The mutations do not cluster 
at a particular location on 3D structure. The green-labeled residues abolish the 
interactions when they get mutated, but the yellow-labeled ones do not. 
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Figure S2: A20 needs to dimerize in order to execute its function. (a) We obtained 
A20-dimer structure that is very similar to the ones that are observed in asymmetric 
units of two pdb entries (3dkb_CF and 2vfj_BC), which were suggested to be 
biological. (b) Structure of TRAF6 interaction complex with A20-homodimer. This 
interaction interferes with TRAF6-Ubc13 interaction. 
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Table S3: Nonsense or frame-shift mutations on negative regulators.  Although these 
mutations do not fall onto the interface residues, they lead to loss of the whole domain 
of the proteins that are covered in the PPI complexes modeled in this study.  

Cancer Study Mutation 
Mutation 
Type Protein Disrupted PPI 

Stomach (TCGA pub) G9*  Nonsense BCAP 
BCAP-TLR4, BCAP-Mal, BCAP-
MyD88, BCAP-TRAM, BCAP-TRIF 

Prostate (Broad/Cornell 
2012) P2fs FS del SIGIRR 

SIGIRR-TLR4, SIGIRR-Mal, SIGIRR-
MyD88, SIGIRR-TRAM, SIGIRR-
TRIF 

Bladder (TCGA) Q111* Nonsense SIGIRR 

SIGIRR-TLR4, SIGIRR-Mal, SIGIRR-
MyD88, SIGIRR-TRAM, SIGIRR-
TRIF 

Esophagus (Broad) E30*  Nonsense ST2 
ST2-TLR4, ST2-Mal, ST2-MyD88, 
ST2-TRAM, ST2-TRIF 

Lung adeno (TCGA 
pub) Y50fs  FS del ST2 

ST2-TLR4, ST2-Mal, ST2-MyD88, 
ST2-TRAM, ST2-TRIF 

Lung adeno (TCGA 
pub) S125*  Nonsense ST2 

ST2-TLR4, ST2-Mal, ST2-MyD88, 
ST2-TRAM, ST2-TRIF 

Stomach (TCGA pub) G228fs  FS ins ST2 
ST2-TLR4, ST2-Mal, ST2-MyD88, 
ST2-TRAM, ST2-TRIF 

NCI-60 A248fs  FS del ST2 
ST2-TLR4, ST2-Mal, ST2-MyD88, 
ST2-TRAM, ST2-TRIF 

chRCC (TCGA) M285fs  FS ins ST2 
ST2-TLR4, ST2-Mal, ST2-MyD88, 
ST2-TRAM, ST2-TRIF 

Stomach (Pfizer UHK) L350fs  FS del ST2 
ST2-TLR4, ST2-Mal, ST2-MyD88, 
ST2-TRAM, ST2-TRIF 

Melanoma (Broad) W361*  Nonsense ST2 
ST2-TLR4, ST2-Mal, ST2-MyD88, 
ST2-TRAM, ST2-TRIF 

Colorectal (TCGA pub) G47* Nonsense CYLD CYLD-p62, CYLD-TRAF6 

Colorectal (TCGA) G47* Nonsense CYLD CYLD-p62 

CCLE S159fs  FS del CYLD CYLD-p62 

Head & neck (TCGA) G179fs  FS del CYLD CYLD-p62 
Head & neck (TCGA 
pub) G179fs  FS del CYLD CYLD-p62 

NCI-60 E245*  Nonsense CYLD CYLD-p62 
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