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Table S1 
Name Sequences  
sgRNA 
F 

ggagaaccaccttgttggcgtaagtctcatatttcaccgtttaagagctatgctggaaacagca 

sgRNA 
R 

ctagtactcgagaaaaaaagcaccgactcggtgccac 

5’ HR F aggggttccgcgcacatttccccgaaaagtgccacctgacaagttgctgtaatgtaacacaatgagactgact 
5’ HR R tcacactccctccacctgagccacctccagagcctccacctatttcacctggtggagtcacagag 
3’ HR F tgagacttacgcaacatctgggcttaaag 
3’ HR R tagccccactcctgggtgattg 
eGFP F ggtggaggctctggaggtggctcaggtggagggagtgtgagcaagggcgaggagc 
eGFP R ctttgccctgactttaagcccagatgttgcgtaagtctcacttgtacagctcgtccatgccg 
Vector 
F 

gggtggaagagattccaccaatcacccaggagtggggctaaaacggtctccagcttggctg 

Vector 
R 

attagcaagtcagtctcattgtgttacattacagcaacttgtcaggtggcacttttcgggga 

Primer 
set 1 F 

attcttctaccagtcccaaacaaaagctctc 

Primer 
set 1 R 

cttgtacagctcgtccatgccg 

Primer 
set 2 F 

gaagagccatttcccccagcac 
 

Primer 
set 2 R 

agtccagctggcatcggttca 
 

 
	  



 
SI Figure Legends:  
 
Figure SI 1: Construction of light inducible Brn2 expression system. Generation of 
Nanog-GFP knock-in reporter cell line through Cas9 mediated homologous 
recombination, related to Figure 1 A) Design of gene expression vectors for 
optogenetic Brn2 induction. The GAVPO protein is a synthetic transcription factor that 
homodimerizes to drive the GAL4-UAS in the presence of blue light (Wang, Nature 
Methods, 2012). We engineered a PiggyBac expression vector with puromycin resistance 
that drives that GAVPO protein from the eF1alpha promoter for constitutive expression 
in ES cells. In our system, a second expression vector contains the four copies of the 
GAL4-UAS upstream of the gene of interest, Brn2. Brn2 is additionally fused to 
TAGRFPT2 separated by a 3x glycine serene linker. B) Distribution of Brn2-RFP in the 
dark (blue) and following 24 hours of light activation (300uW/cm^2) (pink). Br2n-RFP 
level is shown normalized to the mean fluorescence intensity of the dark distribution.  C) 
Phase contrast and fluorescence images of Brn2-GAVPO ES cells in the dark and D) 
following 24 hours of light induction. In the dark, cell colonies remain round and do not 
contain nuclear RFP. Following light activation, colonies are flat and contain bright 
nuclear RFP signal. (20um scale bars) E) IF staining of Brn2-GAVPO ES cell colony in 
the dark showing that cells stain positive for Nanog prior to light induction and negative 
for Nanog after 24 hours 300uW blue light (scale bar, 20 um). F) Brn2-GAVPO 
transfected with a cytoplasmic GFP following 72 hours of light exposure. Colonies have 
started to form a dense network of interconnected projections. (scale bar, 40um) G)  Brn2 
activation and decay as a function of time following a one hour light pulse at 300uW as 
measured by FACS. The graph shows the mean as well as the top and bottom quintiles 
for a population of >30,000 cells at each time point. The plot has been normalized to the 
mean Brn2-RFP level in a population of cells exposed to constant light for 24 hours.   H) 
Schematic of strategy to generate a Nanog-EGFP knock-in allele using CAS9. The stop 
codon of Nanog is labeled in red. The sgRNA coding sequence is capitalized and 
underlined. HA-L (2 kb) and HA-R (3 kb) represent the homologous arms of the donor 
vector. I) Detection of the EGFP insertion in ES cells. Primer set #1: an external forward 
primer specific for an upstream sequence outside of homologous arms and an internal 
reverse primer specific for EGFP. Primer set #2: a pair of internal forward and reverse 
primers targeting a region > 1000 nt up- and down-stream of the EGFP. 1) Wild-type ES 
cells. 2) Monoallelic EGFP insertion ES cells. 3 and 4) Biallelic EGFP insertion ES cells. 
J) Top: Representative image of Nanog-EGFP expression in Nanog-EGFP biallelic ES 
cells. Bottom:  Representative image of Nanog-EGFP expression in differentiated 
biallelic Nanog-EGFP ES cells. ES cells are differentiated for 3 days under DMEM 
medium with 10% FBS. Cells in C and D acquired using same imaging settings.  K) 
Nanog distributions for cells maintained in differentiation and non-differentiation media 
from image analysis. Plot shows down regulation of Nanog following 24 hours of 
forward differentiation. L) Scatter plots of Nanog and Brn2 collected using immune-
fluorescence staining for Nanog and Brn2-RFP to confirm measurements with knock-in 
cell line. For each plot, a panel of IF images were collected and automated image analysis 
was performed using DAPI co-stain to detect > 500 cells. Scatter plots show that cell 
population shifts from being entirely Nanog-on when exposed to 1uW/cm^2 of light for 



24 hours (Top) to having an “L” shape where Nanog and Brn2 are mutually exclusive 
after 24 hour exposure at 300uW/cm^2 (Bottom). Data is not as quantitative as FACS 
data due to image segmentation but provides qualitative confirmation of data collected 
with Nanog-GFP cell line. 
 
SI Movie 1, related to Figure 1: Time lapse imaging of Brn2-TAGRFPT induction. 
Cells exposed to continuous 300uW/cm^2 blue light. Images captured every 20 minutes 
for 20 hours. TAGRFPT fluorescence is localized to the cell nucleus.  
 
Figure SI 2: RNA-seq data and FACS analysis reveal Brn2 activation of a neural 
gene expression program that includes Neurod1 Cell death and photobleaching 
controls, related to Figure 1. A) Phase contrast and dead cell stain images of cells 
following 48 hours of light activation at 300uW. Dead-cell stain identifies a small patch 
of cells that stain positive. For comparison, Invitrogen dead cell stain and phase contrast 
images of cells exposed to 1.2mW of light for 72 hours to induce strong cell death. Scale 
bar (20um in both sets of images). B) FACS quantification of cell death with 7AAD at  
(dark), 24 and 48 hours of Brn2 activation with 300uW. For each sample, quantification 
was done in >30,000 cells. Bar graph indicates the number of “dead-cells” as extracted 
through quantification in the bulge of the 7AAD histogram. C) FACS quantification of 
Nanog-GFP levels in cells lacking the Brn2 inducible construct (blue and purple curves). 
Yellow curve shows control cell population with Brn2 inducible construct. Histograms 
show that Nanog-GFP levels are indistinguishable in cells exposed to 300uW blue light 
vs in the dark. Bottom plot shows mean and standard deviation of Nanog-GFP in three 
cell populations. This data is consistent with the published literature showing minimal 
bleaching at the light powers used for optical induction in our experiments. D) Fold 
change over time of the top activated/repressed transcription factors from RNA-seq. E) 
The distribution of Neurod1 expression as measured by immunostaining of Neurod1 and 
FACS at 0, 14, and 24 hours of Brn2 induction. The shape of the Neurod1 distribution 
shifts to the right following activation. At 14 hours two cell populations appear, and by 
24 hours the distribution function is clearly separated. Imaging (as in Figure 1) showed 
the absence of nuclear Neurod1 for transient Brn2 induction and its nuclear presence 
following light induction of 24 hours at high power. F) We verified by 
immunofluorescence that Neurod1 is expressed in Nanog-off (differentiated) cells across 
a large range of light powers suggesting that the switch from the Nanog-on (pluripotent) 
to Nanog-off (differentiated) state precedes neural differentiation.  Brn2-ES cells induced 
with the indicated light power (power is in uW but distance unit omitted for clarity) and 
stained for Neurod1 using IF and alexa 647. Microscopy and automated image analysis 
were used to segment > 500 cells at each light power and measure Nanog and Neurod1 
intensities in each cell. In the scatter plots, each dot represents a single cell. Nanog and 
Neurod1 are shown in arbitrary fluorescence units, which are identical across plots. 
Scatter plots contain an “L” shape that becomes pronounced at high light powers. This 
shape indicates that Neurod1 and Nanog are expressed in mutually exclusive cell 
populations; Neurod1 is activated in cells that down-regulated Nanog. G) IF images of 
Brn2-GAVPO ES cells following 24 hours of light exposure. Neurod1 present (Red) and 
mutually exclusive with Nanog-positive cells (Green) (40 um scale bar). H) RNA-seq 
shows that Neurod1, Insm1, Sox4, Hes6,and Gbx2 (top left) – genes that are activated by 



Brn2-GAVPO within 24 hours become activated at approximately 9 days in this protocol. 
A series of neural markers for synapse function (top,left), Electrical activity (top ,right) 
and neural connectivity and migration (bottom, right) are shown to provide context for 
the terminal state of the neurons form in vitro differentiation experiment.  
 
 
SI Movie 2, related to Figure 1:  Phase contrast time-lapse images of Brn2-GAVPO ES 
cells exposed to sustained blue light induction of Brn2 for ~50 hours.  Frames are every 7 
minutes for apprx 50 hours. 
 
Figure SI 3:  ES cells tolerate sub-threshold levels of Brn2 for greater than 24 hours 
without differentiation, related to Figure 2 A) Nanog-GFP,Brn2-RFP distribution for 
cells held at a “low” induction power 10uW for 24 compared with 48 Hours (Right). 
Distribution shows that cells can be stably maintained below the Brn2 switching 
threshold. B) Histogram of Nanog-GFP expression for cells at 24 and 48 hours for 
Brn2<100. C) Nanog-GFP and Brn2-RFP distribution for >10,000 cells following 24 
hours of 1 hour light pulses spaced by 6 hour intervals for typical 300 uW illumination 
used elsewhere. Right hand plot shows trace of Brn2 (mean +/- standard deviation) 
extracted from time-lapse imaging data. Brn2 level reaches a near constant steady state 
value within 8-10 hours, suggesting that constant below threshold induction of Brn2 does 
not induce Nanog down-regulation.  
 
 
Figure SI 4: Fluctuations and regime tuning in two-state switch model, related to 
Figure 3. A) Left, Distribution of Nanog expression levels in a cell population as a 
function of Brn2 input as derived from a modified version of the mathematical model that 
accounts for Nanog fluctuations through a phenomenological framework. Right, 
Conditional distribution of Nanog for a series of increasing Brn2 levels from modified 
mathematical model (blue to red for increasing Brn2). B) Tuning of Nanog half-life 
modulates filtering properties of circuit. Diagram shows theoretically-predicted response 
of pluripotency circuit to pulsed Brn2 inputs of varying magnitude (y-axis) and duration 
(x-axis). The model predicts that the impulse response of the network has two regimes 
separated by a boundary: one where the circuit can buffer the input, preventing 
differentiation (blue shading), and another where cells differentiate in response to the 
pulse input (red shading). Amplitude and duration thresholds (a,d) simply depend upon 
the Nanog half-life, so that a doubling of the Nanog half-life doubles the Nanog 
concentration threshold and approximately doubles the duration threshold.  
 
 
 
Figure SI 5:  MyoD induction induces a graded down-regulation of Nanog, related 
to Figure 4 A,B,C) Nanog-GFP and MyoD-RFP distributions shown for three light 
induction powers (4,15,and 25uW). Each experiment contained >30,000 cells. For low 
light powers, MyoD is induced in cells and Nanog-GFP is down-regulated by Nanog 
adopts intermediate levels not seen in Brn2 induction experiments.   D) Phase contrast 
images of MyoD induced ES cells following 3 days of 300uW light exposure. Images 



show phenotypic changes in ES cells induced by MyoD. 40um scale bar. E) The relative 
impact of Brn2 and MyoD induction compared as a function of  V τ for fixed k = 1/200 
as in our model. In our model V τ = 1.05.  
 
SI Movie 3, Related to Figure 5: Psuedo-colored time lapse image sequence for Nanog-
GFP (Green) and Brn2-RFP (red). Frames are captured every 15 minutes for 
approximately 15 hours.  
 
 
Figure SI 6: Rapid Nanog protein production balances rapid Nanog degradation in 
unperturbed ES cell, related to Figure 5.   A) Nanog-GFP cells were treated with 
proteasome inhibitor to block protein degradation as described in methods. Plot shows 
the mean and standard deviation of Nanog-GFP levels at 6 time points following 
proteasome inhibition as measured by FACS. The red line shows a least squares fit to the 
linear section of the curve. Fits were performed to middle four time points to focus on 
time points at which a) drug was activate b) macroscopic effects of protein accumulation 
had not taken place. The y-axis is normalized to the mean GFP level in the unperturbed 
ES cell population. The slope of the red line is .45 indicating that cells produce 45% of 
the steady state Nanog-GFP level every hour. B) Nanog-GFP distribution at indicated 
time points following proteasome inhibition as measured by FACS. Data illustrates that 
the Nanog-GFP distribution moves to the right in presence of proteasome inhibition, 
supporting the validity of measurement from A.  
 
 
Movie SI 4, related to Figure 5: Nanog half-life measurement. A GAVPO-Nanog-RFP 
cell line was generated for optical pulse chase experiment. Cells were exposed to a one 
hour pulse of blue light and imaged continuously with frames captured every 20 minutes 
for 900 minutes. Cells activate Nanog-RFP and then Nanog decays rapidly. Data analysis 
shown in Figure 4.   
 
 
Figure SI 7:  Mathematical modeling and parameter fits for Brn2 dynamic model; 
Neurod1 is activated only in Nanog-off cells in light pulse experiments, related to 
Figure 7. A) Plot shows that distribution of Nanog and Brn2 following 24 hours of light 
input performed simultaneously to the pulse experiments in 6A. Experiment confirms 
~100 fold Brn2 threshold. B) Plot of steady state normalized Brn2 level as a function of 
light power. Blue points represent the mean Brn2-RFP level in a population of cells 
exposed to the indicated light power as measured through FACS. Red curve is derived 
from a least squares fit to a Hill function model (equation 31 in SI, V_b = 211, k_b = 7). 
C) Brn2 dynamics in response to a constant light input. Blue dots are data derived from 
(N>10 cells)  analysis of time-lapse image series. Red line is a fit to a hill function model 
(equation 32 in SI, m= 4, k = 3.8 hours). D) Brn2 half-life measurement. Cells were 
exposed to a one hour pulse of light and Brn2-RFP was measured in n = 10 single cells. 
Single cell trajectories were averaged and log transformed. Plot shows log transformed 
data (blue dots) and an exponential fit (red line). Half life extracted from fit is 8.22 +/- 
1.07 hours. E) Simulated Nanog and Brn2 trajectories from mathematical model for 



above threshold Brn2 induction. Green curve shows simulated Nanog switching from 
Nanog-on to Nanog-off. Red curve shows simulated Brn2 induction. Compare with 
Figure 3.  F) Images of cells from (A) with Dapi, Nanog-GFP, Brn2-RFP and IF staining 
for Neurod1. 30 minute light pulse induces Brn2 (top left) but does not down-regulate 
Nanog. Neurod1 is absent in this cell population, consistent with scatter plots. Five hour 
light pulse deactivates Nanog and activates Neurod1 in a small sub-population of cells. 
24 hour light activation down-regulates Nanog, so that only a small fraction of cells 
maintain Nanog expression. Neurod1 and Brn2 are active in a large population of cells, 
and Neurod1 and Nanog are mutually exclusive as shown in color-combined image of 
Nanog and Neurod1. G) Scatter plots of cells stained for Neurod1 exposed to pulses of 
high light power (300uW) for three different durations (30 minutes, 5 hours, and 24 
hours). Plots show that Neurod1 is inactive following a 30 minute light pulse, consistent 
with the cell population remaining in the Nanog-on state. At 5 hours, a small number of 
cells activate Neurod1, and Neurod1 is significantly activated for the 24 hour pulse.  
 
Table SI 1: Oligonucleotide sequences used for Nanog-GFP cell line construction, 
related to Figure 1. Table lists sequences of key DNA and sgRNA constructs used for 
homologous arm generating and Cas9 mediated insertion of GFP into the Nanog locus.  
 
 
 
 
 
 



 

Supplemental Experimental Procedures:  

mESC  culture conditions: E14 mouse ES cells were routinely passaged on gelatin 
coated tissue culture plates, in N2B27 media supplemented with LIF+2i. Optogenetic 
stem cell lines were maintained in the dark and passaged under red illumination (650 nm 
wavelength LED) for routine cell culture. Cells were routinely imaged in 24 well imaging 
plates (Ibidi, 82406).  
 
N2B27 Media (250 ml):  118 ml DMEM/F12 + GlutaMAX (Invitrogen, 10565-018), 120 
ml Neurobasal (Invitrogen, 21103-049), 1.25 ml NEAA (Invitrogen, 11140-050), 1.25 ml 
Sodium Pyruvate (Invitrogen, 11360-070), 1.25 ml GlutaMAX (Invitrogen, 35050-061), 
1.25 ml N2 (Invitrogen, 17502-048), 2.5 ml B27 - Vitamin A  (Invitrogen, 12587-010), 
166 µl BSA (7.5% stock, 50µg/ml) (Gemini, 700-110), 250 µl 2-ME (100 mM 1,000x 
stock in PBS) (Sigma, M3148-25ML).  

 
2i Media (250 ml). 250 mL N2B27 media, 250 uL LIF (106 U 1,000x stock) (Millipore, 
ESG1107), 75 uL CHIR (10 mM 3,333x stock in DMSO) (Stemgent, 04-0004), 25 uL 
PD0325901 (10 mM 10,000x stock in DMSO) (Stemgent, 04-0006), Working 
concentrations: LIF 1000 units/ml, CHIR99021 3 µM, PD0325901 1 µM.  
 
Dual allele Nanog-eGFP dual allele knock-in reporter construction:  
 
The Nanog-GFP knock-in cell line was generated from E14 mouse embryonic stem cells 
(gift from Chong Park) through Cas9 mediated homologous recombination of eGFP into 
the C terminus of the endogenous Nanog gene (Figure S2).  
 
Production of sgRNA and DNA donor  
The sgRNA expression vector was linearlized by a BstXI and XhoI digest and gel 
purification. The sgRNA sequence was added in the sgRNA primer F (Table S1). The 
sgRNA was amplified by PCR with primers sgRNA F and sgRNA R (Table S1). The 
sgRNA product was digested with BstXI and XhoI, gel purified and ligated to the 
linearized vector. 
 
The Nanog-GS linker-eGFP vector was assembled with three fragments (5’ homologous 
arm of Nanog, GS linker-eGFP and 3’ homologous arm of Nanog) and a vector backbone 
by using Gibson Assembly Master Mix (New England Biolabs). The 5’ homologous arm 
was amplified by PCR with primers 5’HR F and 5’HR R (Table S1) from genomic DNA 
of mES cells. The 3’ homologous arm was amplified using the same method. The GS 
linker was added to the eGFP coding region by PCR amplification using primers eGFP F 
and eGFP R (Table S1).  The backbone vector was digested with PmeI and ZraI. The 
three fragments and the backbone vector were gel purified.  The overlapping 5' and 3' 
arms were added to the backbone vector by PCR amplification with primers vector F and 
vector R (Table S1). The backbone vector and three fragments were assembled into the 
Nanog-GS linker-eGFP vector. 



 
 
Electroporation and clonal mES cell lines 
 
2.5 µg pX330-Cas9, 2.5 µg sgRNA and 15 µg Nanog-GS linker-eGFP donor DNA in 100 
µL Nucleofector solution (Lonza) were electroporated into 1×106 E14 mES cells using 
program A-030. After 3 days in culture, sorted single eGFP positive cells  were seeded in 
a 96-well plate with one cell per well. Monoallelic and Biallelic targeting was verified by 
PCR (Figure S2,Table S1) 
 
Light inducible GAVPO-Brn2 cell line: Optogenetic induction of Brn2 in E14 mES 
cells was accomplished using the GAVPO blue-light activate-able transcription factor via 
two PiggyBac vector constructs. The first construct contains the GAVPO gene driven by 
the eF1alpha promoter with puromycin resistance. The second vector contains Brn2 fused 
to TAGRFPT2 driven by 5 copies of the GAL4 UAS sequence (pG5) with hygromycin 
resistance.  
 
To generate the pG5-Brn2 PiggyBac vector, the pG5 promoter region from the Promega 
vector pG5luc was removed and cloned into a PiggyBac ready vector (DNA 2.0, pJ549) 
with a hygromycin resistance cassette. Base pairs 1-225, including poly(A)-5XGAL4-
TATA (prior to the luc gene), were used to replace the EF1alpha promoter in pJ549 
(DNA 2.0). The Brn2 gene was codon optimized for mouse expression and tagged with 
TAGRFPT2 separated by a glycine serine linker (GGGSGGGSGGGS).  
 
The GAVPO cDNA was synthesized and placed on a PiggyBac plasmid under the control 
of the EF1alpha promoter (pJ549) with a puromycin resistance cassette. GAVPO and 
Brn2 constructs were generated by DNA 2.0. Light dependent induction of Brn2-RFP 
was verified by microscopy and FACS in a blank E14 cell line prior to generating the 
Nanog-GFP construct.  
 
Biallelic Clone E14N14 was selected from the Nanog-GFP targeting and verified for dual 
allele tagging (Figure SI 2). The cell line was then transfected serially with 
Lipofectamine 2000 to introduce Brn2-pG5 and Ef1a-GAVPO into the cells. Cells were 
first transfected with the GAVPO construct and selected with puromycin at 1ug/ml for a 
week. Cells were next transfected with the Brn2-pG5 and selected with dual hygromycin 
at 30ug/ml and puromycin for one week. Dual antibiotic selection was required to 
generate a dual ef1alpha-GAVPO/pG5-Brn2 ES cell line.  
 
Light inducible GAVPO-UAS-Oct4 and GAVPO UAS-Myod cell lines: The cell lines 
used in Figure 5 for Oct4 and MyoD induction were generated with exactly the same 
procedure as the Brn2 line. For these constructs, Brn2 was replaced by codon optimized 
cDNA for Oct4 or MyoD.  
 
 
Live-dead cell staining: For FACS quantification of dead cells, 7AAD dead cell stain 
from Invitrogen was used (A1319). Cells were prepared and dye diluted per manufacturer 



instructions. Cells were induced with Brn2-RFP at 300  uW and collected at 0,24, and 48 
Hours. 7AAD was measured in >30000 by FACS. Dead cell fraction was quantified by 
gating on the second peak in the 7AAD distribution. For imaging, the Invitrogen 
Live/Dead fixable blue dye kit was used (L34961) to stain cells at 48 H post light 
induction. To validate the assay, cells were exposed to a high light power 1.2mW for 3 
days yielding a large number of dead cells that were clearly visible upon staining with the 
dye.  
 
 
 
Microscopy: All imaging experiments were performed with a Nikon Ti-E Microscope 
with Hamamatsu Flash 4.0 camera, a Sutter Lambda XL lamp, and a Sutter Emission 
wheel. The Scope was controlled by Nikon Elements software NIS-Elements 4.2 (Build 
982). Time-lapse imaging experiments were performed with an in Vivo Scientific 
incubator and CO2 control Plan Fluor 40x/0.75 (DIC N2 / 40X I) 164nm/pixel Plan Apo 
20x/0.75 (DIC N2 / 20X) 327nm/pixel. Standard GFP, RFP, and Cy5 filter sets were used 
in IF and GFP/RFP imaging experiments. For immunofluorescence experiments, cell 
nuclei were segmented using Cell Profiler.  
 
For time-lapse imaging, single cell nuclei were tracked using computer assisted manual 
tracking in Fiji. In all cases, single cell trajectories were extracted from raw image 
sequences. The mean fluorescent intensity was extracted in a cell nuclei and the local 
background was subtracted from this value for each data point. Single cell trajectories 
were smoothed by calculating a windowed average across frames representing one hour 
of time (4 frames for 15 minute time points).  Plots in Figure 5 represent an average of 
smoothed single cell trajectories. All data analysis was performed in Mathematica and 
Matlab.  
 
LED induction of Brn2 via Rainbowduino driven LED panel masked with 3D 
printed tray: An 8x8 LED matrix driven by a Rainbowduino (both from Seedstudio) 
was used to spatially and temporally control light pulses given to the cells. A custom 3D 
printed mask was used to ensure optical isolation of individual wells on a 24 well plate. 
The Rainbowduino driver gives programmatic control over the LEDs in an Arduino-like 
environment (C), allowing for preset sequences of illumination patterns. Each LED on 
the matrix is individually addressable. The effective intensity of the LEDs is controllable 
by modulating the current delivered to each LED. A dispersive element was necessary to 
ensure uniform illumination across an entire well: a Kim-wipe was used for our 
purposes. The LED power was calibrated prior to the experiment specifically using a 
power meter. Control experiments were performed to ensure isolation of individual wells. 
Fixed duration pulse experiments were performed in individual wells. For pulse time 
series experiments (Figure 7A,Figure S1), pulses were shifted in time to allow the 
population response to be interrogated at different time points relative to pulse initiation 
(Figure 7A).  
 
Optical induction experiments were performed in a standard tissue culture incubator at 37 
C and 95% humidity, 5% CO2. Experiments were performed in 10cm plates or in 24 well 



plates from Ibidi. Standard Ibidi plates are made of black plastic and optically insulate 
individual wells for microscopy.  
 
Immunofluorescence: Cells were fixed with 4% PFA, washed with PBS and blocked 
using standard methods. The following primary anti-bodies and Alexa 647 conjugated 
secondary anti-bodies were used (1:1000): Anti-beta-tubulin III (Tuji, 1:1000; Covance), 
Neurod1 (1:300; Santa Cruz Biotechnology sc-1084), Nanog  (1:500; ReproCell 
RCAB0002P-F), Oct4   (1:300; Stemgent 09-0023) 
 
 
 
RNA-seq:  
 
RNA-seq experiments were performed in a similar fashion to the other optical induction 
experiments in the paper. Cells were exposed to 300uW blue light in an Ibidi 24 well 
plate and samples collected at indicated time points. We note that RNA-seq experiments 
were performed on the base E14 cell line with the light inducible Brn2 construct prior to 
the introduction of the integrated Nanog-GFP reporter.  
 
RNA extraction 
Total RNA was isolated by using the RNeasy Mini Kit (Qiagen) and treated with Rnasin 
Plus (Promega). Samples were quality controlled with the NanoDrop ND-1000 (Thermo) 
and the RNA 6000 Nano Reagents I Kit on the Bioanalyzer 2100 (Agilent). 
 
RNA library preparation 
500 ng of total RNA per sample was used to generate multiplexed mRNA-Seq libraries 
with the SENSE prep kit for Illumina (Lexogen). Samples were quality controlled and 
multiplexed with the High Sensitivity DNA Reagents Kit on the Bioanalyzer 2100 
(Agilent), the Qubit dsDNA HS Assay Kit (Invitrogen) and the SYBR FAST Universal 
qPCR Kit (KAPA Biosystems). Multiplexed libraries were sequenced on the HiSeq 
(Illumina) using 150 base pair, single end reads or on the MiSeq (Illumina) using 50 base 
pair, single-end reads. 
 
RNA-seq Data Analysis 
Pass filter reads were de-multiplexed using the MiSeq (Illumina). Base pairs were 
removed from the 3' and 5' end of all reads where less than 75% of the base pairs showed 
a Sanger quality below 33 using FastXTrimmer. Individual reads with a quality score 
below 30 were removed from analysis using Fastq Quality Filter. Reads were aligned to 
the mm9 mouse transcriptome using bowtie2. Genes with fewer than 10 total reads were 
removed from analysis.  
 
Gene expression programs were defined by performing non-negative matrix factorization 
(NNMF) across the temporal time course dataset with a dimensionality of 4. The NNMF 
dimension was set by first performing PCA on the datasets and defining the number of 
eigenvalues required to capture 90% of variance. NNMF parts were defined by selecting 
genes with part coefficient was more than two standard deviations above the mean 



coefficient value in the part. Then, GO terms were associated with NNMF parts using the 
hyper-geometric test. Top five pathways by p-value are shown in the Figure 1M. To 
confirm NNMF results, we also examined the correlation matrix of all genes that vary 
more than two fold over the time course of the experiment (maximum over minimum 
value is great than 2). A sampled portion of the correlation matrix is shown in Figure 1. 
The matrix has been clustered and shows the existence of two block gene expression 
programs.  
 
FACS:  
Cells were dissociated into single cell suspension using Accutase (Millipore, SCR005). 
Suspended cells were fixed for 15 minutes in 4% paraformalehyde and then washed in 
PBS.  FACS was performed on the LSRII. RFP and GFP were detected using LSRII 
filters mCherry and FITC. FlowJo X software was used to eliminate debris measurements 
from the population of cells through forward and side scatter gating.  
 
FACS data analysis:  Nanog and Brn2 level were normalized consistently in all FACS 
experiments. Nanog was normalized to the mean GFP intensity in the undifferentiated 
mESC population. Brn2 was normalized to the background RFP level in uninduced cells. 
Fitting of Nanog/Brn2 and Nanog distribution functions is described in the Supporting 
Information. All FACS analysis was performed in Mathematica and Matlab following 
gating in FlowJo. The functions lsqcurvefit.m and nlinfit.m were used to fit Nanog-GFP 
distributions to the Gaussian mixture model as described in the Supporting Information.  
 
For the plot in Figure 2A, FACS data across 9 light powers (4,7,15,25,45,75,100,200,300 
µW) and two experimental replicates were pooled into a single data set with ~ 268,000 
data points. The Brn2/Nanog steady state distribution was constructed by sampling 8,000 
points uniformly at random from each of 28 Brn2 bins spaced uniformly on a Log10 
scale between Brn2 = [0,1000]. The smooth probability distribution function in Figure 
2A was constructed using a smooth kernel density estimate of the 2D histogram 
generated from the raw binned Nanog-GFP FACS data.  
 
The Nanog-GFP histograms within each of the Brn2 bins was also extracted and fit to a 
Gaussian mixture model as described in the Supporting Information.  
 
Nanog Production rate measurement: 5 µM of proteasome inhibition Mg132 was 
added to 5 different populations of E14N14 Nanog-GFP tagged cells in 2i media. 
Following Mg132 addition, the cells, were fixed in single cell suspension every 30 
minutes in preparation for FACS, rendering six time-points: 0 hr, 0.5 hr, 1 hr, 1.5 hr, 2 hr, 
and 2.5 hr. Using flow cytometer LSRII, GFP-tagged Nanog was measured at each 
timepoint. After removing background noise, as measured by GFP from blank ES cells, 
the mean GFP level was calculated at each time-point and normalized to the 0hr Nanog-
GFP intensity. The normalized mean intensity at each time point was fit to a linear model 
using least squares fit in Mathematica. The fit was performed on four time points (0.5 hr, 
1 hr, 1.5 hr, 2 hr) to approximate the linear response regime during which the drug is 
active but complex regulatory processes induced by global increases in protein levels 
have not yet occurred. The slope of response corresponds to the basal normalized 



production rate of Nanog protein in ES cells. The slope represents the fraction of the 
steady state Nanog pool that is regenerated each hour.  
 
 
Nanog/Brn2 life-time measurement: A GAVPO inducible Nanog-RFP vector was 
constructed by replacing Brn2 in pG5-Brn2 vector with codon optimized cDNA coding 
for Nanog, so that the glycine serine linker and the TAGRFPT were retained. The Nanog-
RFP construct was integrated into a blank E14 ES cell line with stable expression of 
GAVPO under control of the eF1alpha promoter (without Nanog-GFP tag).  
 
To measure the degradation rate of Nanog in ES cells, cells were exposed to a one-hour 
pulse of blue light in 2i media. Cells were then imaged at 20 time intervals. Individual 
cells were tracked with computer assisted tracking and the Nanog level estimated using 
average pixel intensity minus background. Single cell trajectories were log transformed 
and fit to a linear model using least squares to extract the Nanog degradation rate. The 
histrogram in Figure 4 shows the half-life as calculated from ~50 single cell trajectories. 
Half-life is reported as mean and standard deviation Ln[2]/tau where tau is the decay time 
constant extracted from the fit.   
 
Standard Neural differentiation experiment in SI: 46C Sox1-GFP mES cells were 
differentiated into the neural lineage by inhibition of Fgf , Nodal, and BMP signaling. 
PD0325901 1 µM (Mek inhibitor), A8301 (Nodal/Tgfb inhibitor, 1 µM), LDN193189 
(Bmp antagonist, 0.5 µM) for Sox1+. Cells were harvested at indicated time points (0, 4, 
9, 11 days, Figure S4). RNA-seq analysis performed as described above.  
 
Mathematical modeling and numerical integration: The mathematical model is 
described in detail in the supporting information. Numerical integration of the model was 
performed using NDSolve in Mathematica.  
 

 

	  



Supporting Information: Mathematical Model

In the experimental section of the main text, we study the quantitative response of the
pluripotency network to the temporally controlled induction of Brn2 and make three exper-
imental observations: (i) Brn2 induction can switch the cell (discretely) from a Nanog-on
to a Nanog-off state. (ii) Switching occurs at a threshold level of Brn2 that is 100-fold Brn2
induction over background with a 4 hour relaxation time. (iii) Due to the dynamics of the
switch and Nanog relaxation, the pluripotency network can reject transient pulses of Brn2
that are below sharp amplitude and duration thresholds. In this way, the stem cell uses the
relaxation dynamics of a two-state switch to classify a Brn2 input as a fluctuation or a com-
mand. The dynamics of the network rejects fluctuations while allowing rapid differentiation
in response to above threshold inputs. We call the network an impulse filter due to its ability
to reject pulsatile inputs of defined amplitude and duration.

Here, we develop a simple mathematical model of the pluripotency circuit, and its in-
teraction with Brn2, and explore how these three behaviors might arise from the underlying
biochemical interactions in the system. Our model is a system of two coupled ODEs:

dN

dt
= f1(N,B) (1)

dB

dt
= f2(L), (2)

which describe the dynamics of Nanog, N , and Brn2, B. The function f1 models the core
pluripotency circuit and its interaction with Brn2; f2 models the dynamics of Brn2 as a
function of the light input into the system, L. Below, we develop functional forms for f1, f2
based upon known biochemical features of the circuit and analysis of our data.

Model of the pluripotency circuit as a one component auto-regulatory loop

The plurpotency network is composed of a set of transcription factors (including Nanog,
Oct4, and Sox2 [Figure 1A]). The factors bind to form a protein complex that, in turn,
activates the components of the circuit, so that Nanog, Oct4, and Sox2 regulate their own
expression levels through an auto-regulatory positive feedback loop. Biochemical studies
have shown that Nanog, Oct4, and Sox2 form a complex at the Oct4 promoter that drives
Oct4 expression (Chen,2008;Jaenisch, 2008) . While biochemical studies have verified
the core auto-regulatory topology of the circuit, the detailed on and off rates for complex
formation and promoter binding have not been characterized. Therefore, we develop a
coarse grained model of the circuit that minimizes the number of parameters and allows
direct comparison with our quantitative data.

Specifically, we reduce the number of degrees of freedom in the system by modeling
the three component pluripotency circuit as a single element. Generally, Nanog expression

1



will depend upon the concentration of the Nanog-Oct4-Sox2 (NOS) protein complex:

dN

dt
= V

[N-O-S]m

km + [N-O-S]m
� N

⌧
, (3)

where [N-O-S] is the Nanog-Oct4-Sox2 protein complex concentration. The Hill function
with threshold k, maximum production rate V , and promoter cooperativity m, models the
influence of the NOS complex on Nanog production. The N/⌧ term accounts for simple
first order degradation.

If we consider complex formation to be at equilibrium, and Oct4, Sox2, and Nanog to
experience symmetric regulation, then:

[N-O-S] / [Nanog]. (4)

While sacrificing biochemical complexity, this simplification allows us to develop a one-
dimensional model of the underlying regulatory circuit with a small number of free param-
eters that we can constrain with our data.

We can construct a simple 1D model of this positive feedback loop by considering an
auto-regulatory loop generated by a single component, Nanog:

dN

dt
= V

Nm

km +Nm
� N

⌧
, (5)

where we have substituted [N-O-S] ! N , and Nanog production depends on the current
concentration of Nanog accounting for the auto-regulatory positive feedback in the pluripo-
tency circuit.

Brn2 Destabilization of Circuit

Next, we consider the interaction of this positive feedback loop with Brn2 and show that
Brn2 can induce a transition between on/off Nanog states by destabilizing the positive feed-
back loop.

Brn2 has been shown to bind Sox2 and to sequester it from Oct4, inactivating the Oct4-
Sox2 protein dimer (Lodato, 2013), so that

Brn2 + Sox2 ! Brn2-Sox2. (6)

Specifically, the rate of dimer formation is determined by kinetic on-off rates, but Nanog
protein levels are changing on transcriptional time scales (hours), which are much slower
than timescales of protein binding and unbinding (seconds). Therefore, protein associa-
tion/disassociation approximately equilibrates for any transient Nanog copy number.

At equilibrium, the concentration of the inactive Brn2-Sox2 complex is proportional to
both the amount of free Brn2 and Sox2.

[Brn2-Sox2] = KB[Brn2][Sox2], (7)

where KB is an equilibrium binding constant. Now,
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Sox2total = [Sox2] + [Brn2-Sox2] (8)
Sox2total = [Sox2] +KB[Brn2][Sox2] (9)

[Sox2] =
[Sox2total]

1 +KB[Brn2]
(10)

[Sox2] =
[Sox2total]

�
(11)

where � = 1+KB[Brn2]. [Brn2] is a time-varying quantity under external control through
the optogenetic system. Thus, the free concentration of Sox2 that is available to interact
with Nanog and Oct4 is effectively decreased by Brn2.

This change in [Sox2] will decrease the concentration of the Nanog-Oct4-Sox2 com-
plex:

[Nanog-Oct4-Sox2] ⇠ [Nanog][Oct4][Sox2] (12)

[Nanog-Oct4-Sox2] ⇠ [Nanog][Oct4]
[Sox2total]

�
, (13)

so we can model Brn2 as decreasing the effective concentration of the pluripotency com-
plex. Recalling equations (3) and (5), we scale the concentration of the [N-O-S] complex,
represented by N , by �, so the scaled equations become:

dN

dt
= V

�
N
�

�m

km +

�
N
�

�m � N

⌧
(14)

dN

dt
= V

Nm

(�k)m +Nm
� N

⌧
(15)

dN

dt
= V

Nm

k0m +Nm
� N

⌧
. (16)

Note that k0 = �k = k(1 + KB[Brn2]), so that the threshold for the positive feedback
loop now depends upon [Brn2]. We can interpret this influence of Brn2 as increasing the
threshold for Nanog promoter activation. In [Figure 4B], this effect is seen in the rightward
shift of the Nanog production Hill function with increasing [Brn2].

Equation (16) is our model of the pluripotency circuit and its behavior in response to
Brn2 induction.

Switching at Steady State

First, we analyze the steady-state behavior of (16) and demonstrate that Brn2 drives dose-
dependent, steady-state switching.

At steady state, Nanog concentration, dN
dt = 0, and for a mildly cooperative Nanog

promoter (m = 2), we find:
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N = 0,
⌧

2

⇣
V ±

r
V 2 � 4

k02

⌧2

⌘
, (17)

and the system has one or three real, positive fixed points or steady states depending upon
the sign of D ⌘ (V 2 � 4k02/⌧2). When D > 0, the system has three steady states;
straightforward analysis shows that low (0) and high (+) steady states are always stable,
and the middle (�) steady state is always unstable. We also refer to this unstable steady
state as N⇤.

We interpret the N = 0 fixed point as the Nanog-off fixed point, Noff, and interpret the
N =

⌧
2

�
V +

q
V 2 � 4

k02

⌧2

�
as the Nanog-on fixed point, Non.

The existence of the Nanog-on fixed point depends upon k0 = k(1 +KB[Brn2]):

V 2 � 4k02

⌧2
� 0 (18)

Increasing k0, which is a function of [Brn2], destroys the fixed point.
This relation can be used to determine a threshold level of [Brn2] at which the Nanog-on

stable fixed point disappears. From (18),

k0 =
V ⌧

2

(19)

k(1 +KBB) =

V ⌧

2

(20)

B⇤
=

1

KB

�V ⌧

2k
� 1

�
(21)

where B⇤ is the [Brn2] threshold. When B⇤ > V ⌧
2k � 1, Brn2 has pushed the system across

a bifurcation where the Nanog-on fixed point vanishes. Dynamically the system must relax
to the Nanog-off fixed point.

Energy Landscape picture

We can visualize the global behavior of the system for increasing [Brn2] by thinking of (16)
as emerging due to [Nanog] dynamics on a potential landscape:

dN

dt
= �µ

dU

dN
(22)

U(N,B) = �k0V arctan

N

k0
+ V N � N2

2⌧
, (23)

where U is an effective potential function, and µ is a proportionality constant analogous
to mobility. The local minima of H (where dU

dN = 0) correspond to fixed points. We plot
U(N,B) for increasing [Brn2] in Figure 3E for sample parameters V = 14, k = 11, ⌧ =
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1.85 for convenient plotting purposes. As [Brn2] increases, the minimum of U shift upwards
destabilizing the Nanog-on state.

This energy landscape picture allows us to naturally incorporate fluctuations into the
model. This equation:

dN

dt
= �µ

dU

dN
+ ⌘(t) (24)

U(N,B) = �k0V arctan

N

k0
+ V N � N2

2⌧
, (25)

has the same form as the Langevin dynamics for a particle moving in a potential well of
shape U where ⌘(t) is a random term modeling fluctuations in Nanog. Therefore, the energy
landscape allows a natural extension of the model to model a distribution of cells (particles)
through the Fokker-Plank formalism (manuscript in preparation). Briefly, U(N,B) can be
used to directly generate a model of the distribution of Nanog expression levels, P (N, t), in
a differentiating cell population over time (in response to Brn2 input) where the population
is subject to fluctuations. For simplicity, we consider < ⌘(t)⌘(t0) >⇠ �(t�t0) and generate
the Smoluchowski equation corresponding to :

dP (N, t)

dt
=

1

⇣

d

dN
(U 0

(N,B) P (N, t)) +
T

⇣

d2

dN2
P (N, t), (26)

where ⇣ and T are phenomenological ’drag’ and ’temperature’ terms respectively. In
SI Figure 4A we plot the Nanog distribution function at steady state, dP (N,t)

dt = 0 where
P (N, t) = exp(�U(N,B)/T )/Z at a value of T = 50 and Z is a normalization factor to
normalize probability distributions to 1. The distribution of Nanog as a function of Brn2
induction is qualitatively similar to Figure 2A (manuscript in preparation).

Switching Dynamics

When the Nanog-on fixed point is destroyed, Nanog begins to switch (or ”relax”) to the
N = 0 steady state. We can ask how long it takes Nanog to relax to the Nanog-off state
for a constant [Brn2] input. In general, the switching time will depend upon the competi-
tion between Nanog degradation and residual Nanog production, and hence it will depend
upon [Brn2]. However, we can approximate the relaxation time by considering a system in
which the Nanog production rate has become 0. In this approximation, the system relaxes
exponentially:

dN

dt
= �N

⌧
(27)

N(t) = N(t = 0) e�
t
⌧ (28)

N(t) = Non e
� t

⌧ , (29)
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where Non is the level of Nanog in the Nanog-on state, and the relaxation time is set by ⌧ ,
the Nanog lifetime.

Experimentally, our measured relaxation time will be influenced by residual production
of Nanog and therefore will always be longer, than the estimated ⌧ . Therefore, the measured
relaxation time ⌧m provides an upper bound on ⌧ in the model.

In summary, the simple mathematical model provides a mechanism for circuit switching
and connects the relaxation time of the circuit to the intrinsic degradation rate of the Nanog
protein ⌧ .

Competitive binding vs global inhibitor

In this section, we compare the response of the regulatory network to factors that decrease V
(modeling global inhibition) with factors that interact with the network through competitive
binding which scales k. Interestingly, these two modes of interaction lead to distinct Nanog
behavior. For the unperturbed model, the Nanog-on fixed point occurs at:

Nss =
V 0⌧

2

⇣
1 +

s

1� 4

k02

(V 0⌧)2

⌘
, (30)

where we have taken k0 and V 0 to be adjustable parameters. We notice immediately that
k0 and V 0 distinctly couple to the Nanog-on steady state. While the Nanog-on state linearly
scales (increasing or decreasing) with changes in V, increases in k0 modeling competitive
binding couple to the steady state in a more subtly way. We want to understand how small
increases in k0 modeling low levels of a competitive binding factor (such as Brn2) impact
the steady state as compared to low levels of induction of a global inhibitory factor which
we model as decreasing V’ to model global inhibition by MyoD.

To do so, we calculate:

dNss

dk0
= � 2k0p

�4k02 + (⌧V 0
)

2
(31)

dNss

dV 0 = .5(⌧ +

⌧2Vp
�4k02 + (⌧V 0

)

2
). (32)

r =

|dNss
dV 0 |

|dNss
dk0 |

=

| dNss
dMyoD |
| dNss
dBrn2 |

(33)

Due to the presence of the constant term, ⌧ , in dN
dV 0 , as well as the relative magnitudes

of V ⌧ 1 and k0 in our model prior to Brn2 or MyoD induction, |dNss
dV 0 | >> |dNss

dk0 |. For the
values of V, ⌧, andk used in our model the ratio, r, is 100. In the SI Figure we show the
magnitude of r as a function of the product V ⌧ to provide evidence that this factor is large
in our parameter regime.
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Kinetic filtering: rejecting Brn2 pulses based upon duration

Now, we consider the response of the network to a pulsatile [Brn2] input, an input that is
above threshold [Brn2] > B⇤ for a fixed duration d, but that returns to [Brn2] = 0 for
t > d. We ask whether Nanog remains ”on” or switches ”off” following this Brn2 ”pulse”
and derive an approximate minimum value of d for network switching.

As in the relaxation dynamics argument, when [Brn2] crosses the switching thresh-
old, Nanog begins transitioning from the Nanog-on to the Nanog-off state (Figure 4). The
Nanog-on and Nanog-off states are separated by an unstable fixed point (referred to as N⇤

when [Brn2]= 0 ). If [Nanog] has fallen past the unstable fixed point (N(d) < N⇤), then
Nanog will relax to the Nanog-off steady state when [Brn2] returns to 0 . Alternately, if
N(d) > N⇤, then Nanog will remain in the Nanog-on state following the pulse.

To estimate the critical pulse duration d⇤, as above, we model [Nanog] as decaying
exponentially when Brn2 is above threshold:

N(d) = Non e
� d

⌧ (34)

N⇤
= Non e

� d⇤
⌧ , (35)

so that d⇤ = ⌧ log(Non/N⇤) is the critical pulse duration. Since (Non/N
⇤
) > 1 (the

unstable fixed point occurs at a Nanog concentration less than the Nanog-on concentration),
d⇤ > ⌧ so that the minimum pulse duration is lower bounded by ⌧ the intrinsic Nanog
life-time.

This argument makes several key simplifications. First, Nanog relaxation is not strictly
exponential because the Nanog production rate does not go identiically to 0 when Brn2 is
present. Second, for simplicity we have considered the case of Brn2 switching from on to
off i.e. to 0. More generally, Brn2 can simply drop below the switching threshold, and the
position of the unstable fixed point at that new Brn2 level (unstable point shown in Figure
4) will determine the final state of the circuit.

Steady-state response to perturbations

To explore the response of the circuit to perturbations near the Nanog-on steady state, we
can consider a linearized steady state model of (16):

dN

dt
= V � N

⌧
. (36)

(37)

In this model, small increases or decreases in [Nanog] relax exponentially to steady state
like

˜N(t) = ˜N(0) e�
t
⌧ , (38)
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where ˜N = N � Nss measures the deviation of Nanog from its steady state value, and ⌧ ,
the Nanog lifetime, sets the time scale over which perturbations are damped by the system;
and ˜N(0) is the magnitude of the perturbation. In this way, the relaxation of perturbations
and the relaxation of the system to the Nanog-off steady state following Brn2 induction are
intimately connected.

Fitting the Model to Data

In this section, we fix the underlying parameters in the the model using experimental data.
The mathematical model has four free parameters: k,KB, V , and ⌧ . We consider [Brn2] in
units of KB and fix the remaining free parameters. We eliminate V by scaling the Nanog-
on steady state to 1, determine k using the [Brn2] threshold measurement, and fix ⌧ via the
direct measurement of the Nanog lifetime.

First, we scale the Nanog-on steady state to one by setting:

1 =

⌧

2

�
V +

r
V 2 � 4

k02

⌧2
�
, (39)

k0 ! k since [Brn2] = 0, so that

V =

(1 + k2)

⌧
. (40)

This equation fixes V in terms of k and ⌧ .
Next, we use the measured threshold for [Brn2] switching, B⇤, to fix k by solving (21)

for k :

k = 1 +B⇤ �
p
B⇤

(2 +B⇤
) (41)

The parameter ⌧ is fixed by a direct measurement Figure SI 7D, and B⇤ is set by the
Brn2 threshold. With these free parameters fixed, we have fully parameterized the auto-
regulatory model.

We have ⌧ = 182 min (half life: ⌧ log(2) = 2.1 hours), k = 1/200 (unit-less due to
scaling), and V = .0058 min�1 where Nanog is normalized to the Nanog-on steady state.

Parameterizing Brn2 Activation Model

Brn2 activation depends upon exogenous light inputs and is independent of Nanog. We take
a phenomenological approach to modeling Brn2 dynamics based upon fits to time-course
activation and steady-state Brn2 data.

We model Brn2 dynamics as being controlled by production and degradation terms:

dB

dt
= g(L, t)� B

⌧b
, (42)
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where g(L, t) describes the light-power-dependent and time-dependent production of Brn2,
and ⌧b is the Brn2 life-time.

We decompose g(L, t) into two terms: one accounting for the steady-state activation
level and a time dependent term that models the kinetics of activation.

To parameterize the steady-state behavior of Brn2, we collected cell populations fol-
lowing 24 hours of exposure to nine different light powers and fit the dependence of mean
[Brn2] on light power to a Hill function with least squares (SI Model Fig 7B):

B(L) = Vb
Lm

kb + Lm
(43)

where L is the light power. [Brn2] has been normalized to the background as in Figures
1-5 of the main paper. kb is the threshold light power for activation. We found kb =

7.0uW/cm2, m = 1, and Vb = 211 (normalized units).
To parametrize Brn2 dynamics, we collected time-lapse images of Brn2 at L = 300uW/cm2,

and we fit the activation profile to a Hill function (Figure SI7 C):

h(t) =
tm

kt + tm
, (44)

where we determined m = 4 and kt = 3.8 hours due to the lag phase in activation that we
consistently observed in the curves.

Through optical Brn2 pulse-chase experiments, we determined ⌧b = 10.4 hours (half-
life: 7.22± .8 hours, Figure SI7 D):

dB

dt
= 250(

L

7 + L
)(

t4

3.84 + t4
)� .096B (45)

Figure SI7 E shows a sample simulated trace from the model that demonstrates Brn2-
dependent Nanog switching.

Modeling the circuit’s response to light pulses

To model pulses dynamically, we considered light pulses of a fixed duration d and amplitude
a. We set L = a for t < d, and L = 0 for t > d. To determine the steady-state level of
Nanog, (16) and (45) were numerically integrated for 24 hours of simulated time.

Data Analysis

In Figure 2, we analyze the conditional distribution of Nanog-GFP vs [Brn2] level by fitting
to a Gaussian mixture model. Specifically, we first binned [Brn2] uniformly on a log scale
into 12 bins. The bin size was selected to be large enough to generate smooth Nanog-GFP
distributions. For each [Brn2] bin, we generated a histogram of Nanog-GFP intensities.

We fit these Nanog-GFP distributions to a gaussian mixture model where:
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p(N) =

exp(

�kL(N�NL)2

2kBT ) + exp(

��E
kBT � kR(N�NR)2

2kBT )

Z
(46)

Z =

p
2⇡(

1

kL
+

exp(��E)p
kR

). (47)

This model describes the distribution of particles in a double-well potential where wells are
centered at NL and NR. kL and kR are spring constants that describe the stiffness of the
underlying potential . kBT is the Boltzman factor, here set to 1. �E is an energy difference
between the two wells, and Z is a normalization constant.

Operationally, we fit the conditional [Nanog] distributions in two steps. First, we fit the
marginal [Nanog] distribution ([Nanog] distribution over all [Brn2] levels). This fit gave us
starting values for NL and NR. We use these values as initial conditions in a numerical fit
for each of the conditional distributions P ([Nanog]|[Brn2]).

For low [Brn2], �E < 0 favors occupation of the Nanog-on steady state (Figure 2D).
�E increases with [Brn2] (Figure 2D) inducing a tilt in the double-well potential landscape
and favoring occupation of the Nanog-off state.

We selected this form for the gaussian mixture model because it has a natural interpre-
tation as a potential well. The form of the underlying potential is:

E(N,B) = �kBT log(p(N)) (48)

E = �kBT ln(exp {�kL(N �NL)
2

2kBT
}+ exp {��E

kBT
� kR(N �NR)

2

2kBT
}) (49)

p(N |B) = exp (

�E(N,B)

kBT
). (50)

We have constructed an energy landscape E([Nanog], [Brn2]) and the distribution of [Nanog]
in the cell population is determined by the structure of this landscape. The energy landscape
tilts with Brn2 induction leading to a redistribution of the cell population.

dN

dt
= V

Nm

k0(Brn2)m +Nm
� N

⌧
(51)

(52)
k0 / Brn2 (53)

Note that k0 = �k = k(1 +KB[Brn2]), so that the threshold for the positive feedback
loop now depends upon [Brn2]. We can interpret this influence of Brn2 as increasing the
threshold for Nanog promoter activation. In [Figure 4B], this effect is seen in the rightward
shift of the Nanog production Hill function with increasing [Brn2].
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