SUPPORTING INFORMATION

eZinCh-2: A Versatile, Genetically Encoded FRET Sensor for Cytosolic and Intraorganelle Zn²⁺ Imaging

Anne M. Hessels¹, Pauline Chabosseau², Maarten H. Bakker¹, Wouter Engelen¹,

Guy A. Rutter², Kathryn M. Taylor³, and Maarten Merkx¹*

¹Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands. ²Section of Cell Biology, Division of Medicine, Imperial College London, London, UK. ³Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.

* corresponding author: <u>m.merkx@tue.nl</u>

Supporting methods	Description of the cloning and mutagenesis of genetic	
	constructs used in this study. Description of protein expression	n S2
	and purification. Description of colocalization studies	p.5 -
Supporting table 1	Overview of sensor properties of eZinCh-2 at pH 7.	p.S5
Supporting table 2-5	Free Zn ²⁺ concentrations in various buffer systems at pH 6.0,	p.S6
	pH 7.1, pH 7.8 and pH 8.0, respectively	_
Supporting table 6	Cytosolic, ER and mitochondrial free Zn ²⁺ concentrations	p.S7
Supporting table 7	Overview of primers used for cloning and mutagenesis	p.S8
Supporting figure 1	Zn ²⁺ titration experiments on three different eZinCh mutants	p.S9
Supporting figure 2	ER-eCALWY-4 measurements in MCF-7 and TamR cells	p.S10
Supporting figure 3	mito-eCALWY-4 measurements in HeLa cells	p.S11
Supporting figure 4	Nucleotide and amino acid sequence of the eZinCh-2 ORF in	p.S12
	bacterial expression vector pET28a	_
Supporting figure 5	Nucleotide and amino acid sequence of the eZinCh-2 ORF in	p.S13
	mammalian expression vector pCMV	
Supporting figure 6	Nucleotide and amino acid sequence of the ER-eZinCh-2 ORF	p.S14
	in mammalian expression vector pcDNA3.1	
Supporting figure 7	Nucleotide and amino acid sequence of the mito-eZinCh-2	p.S15
	ORF in mammalian expression vector pShuttle-CMV	
Supporting figure 8	Nucleotide and amino acid sequence of the VAMP2-eZinCh-2	p.S16
	ORF in mammalian expression vector pCMV	

TABLE OF CONTENTS

Supporting Methods

Cloning and mutagenesis. Plasmids encoding for Cerulean and Citrine, connected via a long (GGSGGS)₉ linker, containing different (Cys)₄ binding pockets were synthesized in previous research. A QuikChange Multi Site-Directed mutagenesis (Agilent Technologies) was used to simultaneously introduce different combinations of C144H and C206H mutants in pET28a-eZinCh-4 (primers 1&2 and 3&4 for mutating C144H and C206H, respectively, Supplementary Table 1), generation pET28a-eZinCh-2.1.

Vector pET28a-eZinCh-5 was used to introduce combinations of C206H and C208H mutations by using primer 5&6 and 7&8, respectively, yielding pET28a-eZinCh-2.2, pET28a-eZinCh-2.3 and pET28a-eZinCh-2.4.

To create the mammalian expression vector of one of the eZinCh mutants (pET28a-eZinCh-2), pET28a-eZinCh-2 was digested with *Nde* I and *Not* I to obtain a fragment encoding for eZinCh-2 that could be ligated into a *Nde* I/ *Not* I digested peCALWY-4 vector to yield the mammalian expression vector peZinCh-2¹. For ER-targeting a pcDNA3.1 vector containing the Preproinsulin (PPI) signal peptide, cerulean and citrine fused by a nine GGSGGS linker and a four amino acid long retention sequence KDEL at the end of the C-terminus was ordered (Genscript, USA). For mitochondrial targeting a Not I restriction site was introduced in the pShuttle-mito-eCALWY-4 by site directed mutagenesis (Agilent Technologies). Next pET28a-eZinCh-2 was digested with *Age I* and *Not I* digested pShuttle-mito-eCALWY-4 vector, yielding pShuttle-mito-eZinCh-2. To create the vesicle-targeted mammalian expression plasmid, pET28a-eZinCh-2 was digested with *Age I* and *Not I*, followed by ligation into a vesicle-targeted mammalian *Age I/Not I* digested expression vector. The correct open reading frame for all expression vectors was confirmed by DNA sequencing (BaseClear, Leiden, The Netherlands).

Protein expression and purification. *E. coli* BL21(DE3) transformed with expression plasmid was grown to OD600 in 500 mL Lysogeny Broth (LB) medium containing 50 µg/mL kanamycin in a

shaking incubator at 37 °C. Following induction with 0.1 mM IPTG, the bacterial cultures were grown overnight at 25 °C in a shaking incubator at 250rpm. Cells were harvested by centrifugation and lysed using 10 mL BugBuster Protein Extraction reagent (Novagen) with 10 µL Benzonase. Proteins were purified by Ni-NTA affinity chromatography. Since His-tags are known to readily bind Zn^{2+} , they were removed from all constructs using thrombin cleavage. After elution from the Ni-NTA column, the buffer was exchanged to thrombin cleavage buffer (20 mM Tris-HCl (pH 8.4), 150 mM NaCl, 2.5 mM CaCl2) using PD10 desalting columns (GE, Healthcare). Cleavage of the thrombin recognition site between the His-tag and the Cerulean N-terminus was initiated by the addition of 0.3 U thrombin protease (Novagen) per mg target protein at a 0.2 mg/mL target protein concentration. Cleavage was carried out at RT for 20 hours, after which 1 mM phenylmethylsulfonyl fluoride (PMSF, Sigma) was added to inactivate the thrombin enzyme. Proteins were then loaded onto Ni-NTA once again. To separate the cleaved and uncleaved protein and also the His-tags remained behind on the Ni-column. Subsequently the proteins were loaded onto a size exclusion column (Sephacryl S200, GE Healthcare), using a buffer containing 50 mM Tris, 100 mM NaCl, 4 M Urea and 5 mM DTT. The SEC fractions were analyzed by SDS PAGE for correct size and purity, pooled and concentrated using 10 kDa MWCO centrifugation filters.

Co-localization experiments. HeLa cells were seeded on coverslips and transfected with plasmids encoding for either ER-eZinCh-2 or mito-eZinCh-2 using Lipofectamine 2000. Proteins were allowed to over express for ~24 h. Cells were washed with HBSS buffer, and stained with 1 μ M ER-Tracker Red (Life Technologies) or 300 nM MitoTracker Red (Life Technologies) for 30 min. Cells were imaged on the Leica, TCS SP5X, using the 63x water immersion objective. The expressed eZinCh-2 was excited using the 405 nm laser, followed by recording emission between 515-595 nm. The commercial available ER and Mito Tracker were excited around 587 nm and 581 nm, followed by recording the emission between 605 – 625 nm and 630 – 660 nm, respectively.

For immunocytochemical analysis, INS1(832/13) cells expressing VAMP2-eZinCh2 were fixed in paraformaldehyde 4% for 20 minutes, permeabilized with Triton X-100 (0.5%) for 25 minutes, and

probed with primary antibody against insulin (1:100, DAKO, Cambridgeshire, U.K.), then visualised with Alexa Fluor 568 secondary antibodies (1:200; Life Technologies). Specimens were mounted on glass slides using Vectashield hard set (Vector Laboratories). Image acquisition was performed with a Zeiss Axiovert microscope coupled to a Nipkow spinning-disk head (Yokogawa CSU-10) using a 63x/NA1.4 objective. Two solid-state lasers (CrystaLaser) controlled by a laser-merge module (Spectral Applied Physics) provided wavelengths of 491 nm to excite VAMP2-eZinCh2.2 and 561 nm for insulin. Emitted light was filtered at 525/50 nm and at 630/50nm, respectively. Images were captured with a highly sensitive 16-bit, 512×512 pixel back-illuminated EM-CCD camera (ImageEM 9100-13; Hamamatsu).

Mutants	Cerulean	Citrine	<i>К_d</i> (рН 7.1)	Ratiometric change (%) (pH 7.1)
eZinCh-2.1	C144 H , 206C	144C, 206C	3.7 nM	110%
eZinCh-2.2	C206 <mark>H</mark> , 208C	C206 <mark>H</mark> , 208C	1.0 nM	400%
eZinCh-2.3	C206 <mark>H</mark> , 208C	206C, C208 <mark>H</mark>	4.8 nM	109%

Supporting Table 1: Sensor properties of the eZinCh mutants at pH 7.1.

Supporting table 2: Free Zn²⁺ concentrations in various buffering systems at pH 6.0, 20 °C.^a

Buffering system	0.1 mM Zn ²⁺	0.2 mM Zn ²⁺	0.3 mM Zn ²⁺	0.4 mM Zn ²⁺	0.5 mM Zn ²⁺	0.6 mM Zn ²⁺	0.7 mM Zn ²⁺	0.8 mM Zn ²⁺	0.9 mM Zn ²⁺
1 mM EGTA	7.77·10 ⁻⁸	$1.75 \cdot 10^{-7}$	3.0·10 ⁻⁷	4.66·10 ⁻⁷	6.98·10 ⁻⁷	$1.04 \cdot 10^{-6}$	$1.62 \cdot 10^{-6}$	2.76·10 ⁻⁶	5.93·10 ⁻⁶
5 mM EGTA	1.42·10 ⁻⁸	2.92·10 ⁻⁸	4.47·10 ⁻⁸	$6.09 \cdot 10^{-8}$	7.78·10 ⁻⁸	9.54·10 ⁻⁸	$1.13 \cdot 10^{-7}$	$1.33 \cdot 10^{-7}$	$1.54 \cdot 10^{-7}$
1 mM HEDTA	3.31·10 ⁻¹²	7.45·10 ⁻¹²	$1.27 \cdot 10^{-11}$	$1.99 \cdot 10^{-11}$	2.98·10 ⁻¹¹	$4.47 \cdot 10^{-11}$	$6.96 \cdot 10^{-11}$	$1.19 \cdot 10^{-10}$	$2.69 \cdot 10^{-10}$

^{a.} The free zinc concentrations were calculated using the program MaxChelator using the stability constants present within the program (http://www.stanford.edu/~cpatton/maxc.html/

Supporting table 3: Free Zn²⁺ concentrations in various buffering systems at pH 7.1, 20 °C.^a

Buffering system	0.1 mM Zn ²⁺	0.2 mM Zn ²⁺	0.3 mM Zn ²⁺	0.4 mM Zn ²⁺	0.5 mM Zn ²⁺	0.6 mM Zn ²⁺	0.7 mM Zn ²⁺	0.8 mM Zn ²⁺	0.9 mM Zn ²⁺
1 mM EGTA	$5.5 \cdot 10^{-10}$	1.2·10 ⁻⁹	2.1·10 ⁻⁹	3.3·10 ⁻⁹	4.9·10 ⁻⁹	7.4·10 ⁻⁹	1.2·10 ⁻⁸	2.0·10 ⁻⁸	4.5·10 ⁻⁸
5 mM EGTA	$1.10 \cdot 10^{-10}$	$2.06 \cdot 10^{-10}$	3.16·10 ⁻¹⁰	4.30·10 ⁻¹⁰	5.49·10 ⁻¹⁰	6.74·10 ⁻¹⁰	$8.05 \cdot 10^{-10}$	9.42·10 ⁻¹⁰	$1.08 \cdot 10^{-9}$
1 mM HEDTA	2.02·10 ⁻¹³	4.54·10 ⁻¹³	7.79·10 ⁻¹³	$1.21 \cdot 10^{-12}$	$1.82 \cdot 10^{-12}$	2.73·10 ⁻¹²	4.25·10 ⁻¹²	7.28·10 ⁻¹²	$1.64 \cdot 10^{-11}$

^{a.} The free zinc concentrations were calculated using the program MaxChelator using the stability constants present within the program (http://www.stanford.edu/~cpatton/maxc.html/

Supporting table 4: Free Zn²⁺ concentrations in various buffering systems at pH 7.8, 20 °C.^a

Buffering system	0.1 mM Zn ²⁺	0.2 mM Zn ²⁺	0.3 mM Zn ²⁺	0.4 mM Zn ²⁺	0.5 mM Zn ²⁺	0.6 mM Zn ²⁺	0.7 mM Zn ²⁺	0.8 mM Zn ²⁺	0.9 mM Zn ²⁺
1 mM EGTA	2.32·10 ⁻¹¹	5.22·10 ⁻¹¹	8.96·10 ⁻¹¹	$1.39 \cdot 10^{-10}$	2.09·10 ⁻¹⁰	$3.14 \cdot 10^{-10}$	4.88·10 ⁻¹⁰	$8.37 \cdot 10^{-10}$	1.89·10 ⁻⁹
1 mM HEDTA	3.96·10 ⁻¹⁴	$8.92 \cdot 10^{-14}$	$1.53 \cdot 10^{-13}$	2.38·10 ⁻¹³	3.57·10 ⁻¹³	5.35·10 ⁻¹³	8.33·10 ⁻¹³	$1.42 \cdot 10^{-12}$	3.22·10 ⁻¹²

^{a.} The free zinc concentrations were calculated using the program MaxChelator using the stability constants present within the program (http://www.stanford.edu/~cpatton/maxc.html/

Supporting table 5: Free Zn²⁺ concentrations in various buffering systems at pH 8.0, 20 °C.^a

Buffering system	0.1 mM Zn ²⁺	0.2 mM Zn ²⁺	0.3 mM Zn ²⁺	0.4 mM Zn ²⁺	0.5 mM Zn ²⁺	0.6 mM Zn ²⁺	0.7 mM Zn ²⁺	0.8 mM Zn ²⁺	0.9 mM Zn ²⁺
1 mM EGTA	9.61·10 ⁻¹²	2.16·10 ⁻¹¹	3.71·10 ⁻¹¹	5.77·10 ⁻¹¹	8.65·10 ⁻¹¹	1.3·10 ⁻¹¹	2.02·10 ⁻¹⁰	3.46·10 ⁻¹⁰	7.82·10 ⁻¹⁰
1 mM HEDTA	2.5·10 ⁻¹⁴	5.63·10 ⁻¹⁴	9.66·10 ⁻¹⁴	1.5·10 ⁻¹³	2.25·10 ⁻¹³	3.38·10 ⁻¹³	5.26·10 ⁻¹³	9.03·10 ⁻¹³	$2.04 \cdot 10^{-12}$

^{a.} The free zinc concentrations were calculated using the program MaxChelator using the stability constants present within the program (http://www.stanford.edu/~cpatton/maxc.html/

	Cytosolic Zn ²⁺	ER Zn ²⁺	Mitochondrial Zn ²⁺
	concentration	concentration	concentration
eCALWY-4	0.4 ¹	>5 nM ²	42 ± 28 pM
ZapCY-1	n.d.	$0.9 \pm 0.1 \text{pM}^3$	0.14 pM ⁴
eZinCh-2	0.87 ± 0.1 nM	0.8 ± 0.6 nM	3.3 ± 1.2 pM

Supporting Table 6: Cytosolic, ER and mitochondrial free Zn^{2+} concentrations measured in HeLa cells using different sensor variants

Primer	Sequence
1	5'-CACAAGCTGGAGTACCACGCCATCAGCGACAAC-3'
2	5'-CTGGGGCACAAGCTTGAGTACCACTACAACAGCCACAAC-3'
3	5'-CTGAGCACCCAGTCCCACCTGAGCAAAGACCCCAAC-3'
4	5'-CTGAGCTACCAGTCCCACCTGAGCAAAGACCCCAAC-3'
5	5'-CTGAGCACCCAGTCCTGCCTGCACAAAGACCCCCAACGAG-3'
6	5'-CTGAGCTACCAGTCCTGCCTGCACAAAGACCCCAACGAG-3'
7	5'-CTGAGCACCCAGTCCCACCTGTGCAAAGACCCCCAACGAG-3'
8	5'-CTGAGCTACCAGTCCCACCTGTGCAAAGACCCCAACGAG-3'

Supporting Table 7: Primers used for different cloning different eZinCh mutants

Supporting figure 1: Zinc binding properties of eZinCh mutants at pH 7.1. Emission ratio of eZinCh mutant as a function of Zn^{2+} concentration, EGTA was used as buffering system to obtain the desired free Zn^{2+} concentrations. Solid line represents a fit using a 1:1 binding model, yielding a K_d of ~1 nM at pH 7.1 for eZinCh-2.2. Titration measurements were performed using ~1 μ M protein in 150 mM HEPES (pH 7.1), 100 mM NaCl, 10% (vol/vol) glycerol, 0.01% Tween and 1 mM dithiothreitol (DTT), pH 7.1 or 6.0 at 20 °C.

Supporting figure 2: Responses of MCF-7 (A), and TamR (B) cells expressing ER-eCALWY-4 to the addition of 50 μ M TPEN, followed by the addition of excess 100 μ M Zn²⁺/ 5 μ M pyrithione. Traces represents the average of at least four cells after normalization of the emission ratio at t=0. Error bars represent SEM.

Supporting figure 3: Representative traces of mito-eCALWY-4 expressed in HeLa cells upon addition of 50 μ M TPEN, followed by the addition of excess 100 μ M Zn²⁺/5 μ M pyrithione. Trace represents the average of four cells after normalization of the emission ratio at t=0. Error bars represent SEM.

1		60
61	atggtgagcaagggcgaggagctgttcaccggggtggtgccatctggtcgagctggac M V S K G E E L F T G V V P I V E L D	120
121	ggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctac G D V N G H K F S V S G E G E G D A T Y	180
181	ggcaagetgaceetgaagtteatetgeaceaeeggtaagetgeeegggeeeeggeeeaee G K L T L K F I C T T G K L P V P W P T	240
241	ctcgtgaccaccctgacctggggcgtgcagtgcttcgcccgctaccccgaccacatgaag L V T T L T W G V Q C F A R Y P D H M K	300
301	cagcacgacttetteaagteegeeatgeeegaaggetaegteeggagegeaeeatette Q H D F F K S A M P E G Y V Q E R T I F	360
361	ttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctg F K D D G N Y K T R A E V K F E G D T L	420
421	gtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcac V N R I E L K G I D F K E D G N I L G H	480
481	aagctggagtacaacgccatcagcgacaacgtctatatcaccgccgacaagcagaagaac K L E Y N A I S D N V Y I T A D K Q K N	540
541	ggcatcaaggccaacttcaagatccgccacaacatcgaggacggcagcggcggcagctcgcc G I K A N F K I R H N I E D G S V Q L A	600
601	gaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccac D H Y Q Q N <u>T</u> P <u>I</u> G D G P V L L P D N H	660
661	tacctgagcacc cag tcc <mark>cac</mark> ctg <mark>tgc</mark> aaagacccccaacgagaagcgcgatcacatggtc Y L S T Q S <mark>2</mark> L <mark>9</mark> K D P N E K R D H M V	720
721	ctgctggagttcgtgaccgccgggatcactctcggcatggacgagctgtacaagtcc L L E F V T A A G I T L G M D E L Y K S	780
781	ggaggcggcgagctcattcgtggcggatccggcggaagcgggatccggcggtagcggc G G G E L I R G G S G G S G G S G G S G	840
841	ggatecggeggetecggeggatecggeggegggeggateeggtggaageggtggatee G S G G S G G S G G S G G S G G S G G S	900
901	ggtggtagcggtggatccggtggaagcggtggatccggtggtggtgggtcgggggt G G S G G S G G S G G S G G S G G S G G	960
961	ccgcggggctcggtaccc <mark>atggtgagcaagggcgaggagctgttcaccggggtggtgccc</mark> <u>P R G S V P <mark>M V S K G E E L F T G V V P</mark></u>	1020
1021	atcctggtcgagctggacggacgtaaacggccacaagttcagcgtgtccggcgagggc I L V E L D G D V N G H K F S V S G E G	1080
1081	gagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctg EGDATYGKLTLKFICTTGKL	1140
1141	cccgtgccctggcccaccctcgtgaccaccttcggctacggcctgatgtgcttcgcccgc PVPWPTLVTTFGYGLMCFAR	1200
1201	taccccgaccacatgaagcagcacgacttetteaagteegeeatgeeegaaggetaegte Y P D H M K Q H D F F K S A M P E G Y V	1260
1261	caggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaag Q E R T I F F K D D G N Y K T R A E V K	1320
1321	ttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggac F E G D T L V N R I E L K G I D F K E D	1380
1381	ggcaacatcctggggcacaagcttgagtacaactacaacagccacaacgtctatatcatg GNILGHKLEYNYNSHNVYIM	1440
1441	gccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggac A D K Q K N G I K V N F K I R H N I E D	1500
1501	ggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtg GSVQLADHYQQN <u>T</u> PIGDGPV	1560
1561	ctgctgcccgacaaccactacctgagctac cag tcc <mark>cag</mark> tcg <mark>tgc</mark> aaagaccccaacgag L L P D N H Y L S Y Q S <mark>H</mark> L <mark>C</mark> K D P N E	1620
1621	${\tt aagcgcgatcacatggtcctgctggagttcgtgaccgccgcgggatcactctcggcatg}$	1680
	K R D H M V L L E F V T A A G I T L G M	

Supporting figure 4: Nucleotide and amino acid sequence of eZinCh-2 for the bacterial expression vector pET28a. The His-tag and thrombin cleavage site are depicted in blue and magenta respectively. Cerulean and citrine are colored cyan, and yellow respectively. The flexible peptide linker is depicted in grey. The binding pocket of the sensor is depicted in red, (206H and 208C).

1	atataagcagagctggtttagtgaaccgtcagatccgctagcgccgccaccatgggccat	60
61	atggtgagcaggggggggggggggggggggggggggggg	120
121	gggacgtaaacggccacaagttcagcgtgtccggcgagggcgatgccacctac	180
181	ggcaagctgacctgaagttcatctgcaccagcgtaagctgccctggccctggcccacc	240
241	ctcgtgaccacctgacctgggggggggggggggtgcagtgcttcgccggctacccggaccacatgaag	300
301	cagcacgacttetteaagteegecatgeegaaggetaegteeaggagegeaccatette	360
361	ttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctg F K D D G N Y K T R A E V K F E G D T L	420
421	gtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcac V N R I E I K G I D F K E D G N I I G H	480
481	aagetggagtacaacgccatcagegacaacgtetatateacegecgacaageagaagaac K L E Y N A I S D N V Y I T A D K O K N	540
541	ggcatcaaggccaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgcc G I K A N F K I R H N I F D G S V O L A	600
601	gaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccac	660
661	tacctgagcacc ag tcc <mark>cac</mark> ctg tgc aaagaccccaacgagaagcgcgatcacatggtc Y L S T O S H L C K D P N E K R D H M V	720
721	ctgctggagttcgtgaccgccgccggggatcactctcggcatggacgagctgtacaagtcc	780
781	ggaggcggcgagctcattcgtggcggatccggcggaagcggcggatccggcggtagcggc	840
841	ggatccggcggctccggcggatccggcggcggatccggtggaagcggtggatcc	900
901	ggtggtagcggtggatccggtggaagcggtggatccggtggtagcggtggatccgggggt G G S G G S G G S G G S G G S G G S G G S G G	960
961	ccgcgggggctcggtaccc <mark>atggtgagcaagggcgaggagctgttcaccggggtggtggtgccc</mark> P R G S V P M V S K G E E L F T G V V P	1020
1021	atcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggc	1080
1081	gagggcgatgccacctacggcaagctgacctgaagttcatctgcaccaccggcaagctg	1140
1141	cccgtgccctggcccacctcgtgaccaccttcggctacggcctgatgtgcttcgcccgc	1200
1201	tacccgaccacatgaagcagcacgacttetteaagtegecatgecegaaggetaegte	1260
1261	caggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaag	1320
1321	ttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggac	1380
1381	ggcaacatcctggggcacaagcttgagtacaactacaacagccacaacgtctatatcatg G N T L G H K L E Y N Y N S H N V Y T M	1440
1441	gccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgagac A D K O K N G T K V N F K T R H N T F D	1500
1501	ggcagcgtgcagctcgccgaccactaccagcagacaccactaccggcgacggcgccgtg G S V O I, A D H V O O N T P I G D G P V	1560
1561	ctgctgcccgacaaccactacctgagctac cag ctg tgc aagaccccaacgag	1620
1621	aagegegatcacatggtcetgetggagttegtgacegeeggggatcacteteggeatg	1680
1681	gacgagetgtacaagtaaag <i>cggccgc</i> act D E L Y K -	1711

Supporting figure 5: Nucleotide and amino acid sequence of eZinCh-2 in a mammalian expression vector. Cerulean and citrine are colored cyan, and yellow respectively. The flexible peptide linker is depicted in grey. The binding pocket of the sensor is depicted in red, (206H and 208C).

1	tcgaaattaatacgactcactatagggagacccaagctggctagcatggccctgtggatg	60
61	S K L I R L T I G R P K L A S M A L W M cgcctcctgcccctgctggcgctgctggccctctgggggacctgaccctgccgccgccgccgctct	120
121	R L P L A L W G P P A A F atggtgagcaagggggaggetgttcaccggggtggtgcccatctggtcgagctggagc w V S K C F F C N	180
181	M V S K G E E E F I G V V F I E V E E D ggcgacgtaaacggccacaagttcagcgtgtccggcgaggcgaggcgatgccacctac G D V N G H K F S V S G F G F G D D T V	240
241	ggcaagctgaccetgaagttcatetgcaccaccggtaagetgcccgtgccctggcccacc	300
301	ctcgtgaccaccctgacctgggggtgcagtgcttcgcccggctaccccgaccactgaag	360
361	cagcacgacttetteaagtecegecatgecegaaggetaegteeaggaggeaceatette	420
421	tcaaggacgacggaaatacaagacccgggcggaggtgaagttcgaggggggaaccctg	480
481	gtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcac	540
541	aagetggagtacaaegecateagegacaagettattateaeegecaaageagaagaac	600
601	ggcatcaaggccaacttcaagatccgccacaacatcgaggacggcggcggcgtgcagctgcc	660
661	GIKANFKIRHNIEDGSVQLA gaccactaccagcagaacaccccatcggcgacggccccgtgctgctgcccgacaaccac	720
721	The formation of the fo	780
781	ctgctggagttcgtgaccgccgcgggctggatcactctctcggcatggacggcgtgtaccagtcc	840
841	ggaggcgagctcattcgtggcggatccggcggaagcggcggatccggcgga	900
901	G G G E L I R G G S G G S G G S G G S G G S G	960
961	G S G G S G G S G G S G G S G G S G G S G G S ggtggtagcggtggatccggtggaacccggtggatggatccgggggg	1020
1021	ccgcgggggctcggtaccc <mark>atggtgagcaagggcgaggagctgttcaccgggggggtggtggccc</mark>	1080
1081	P R G S V P M V S K G E E L F T G V V P atcctggtcgagctggacggcgacgtaaacggccacagttcagcgtgtccggcgagggg	1140
1141	ILVELDGDVNGHKFSVSGEG gagggegatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctg	1200
1201	E G D A T Y G K L T L K F I C T T G K L cccgtgccctggcccacctcgtgaccaccttcggctacggcctgatgtgcttcgcccgc	1260
1261	PVPWPTLVTTFGYGLMCFAR <mark>tacccegaccactgaagcacgacttetteaagteegecatgeeegaaggetaegte</mark>	1320
1321	Y P D H M K Q H D F F K S A M P E G Y V caggagcgcaccatcttcttcaaggacgacggcaactacaagacccgccgaggtgaag	1380
1381	Q E R T I F F K D D G N Y K T R A E V K ttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggagga <mark>c</mark>	1440
1441	F E G D T L V N R I E L K G I D F K E D ggcaacatcctggggcacaagcttgagtacaactacaacagccacaacgtctatatcatg	1500
1501	G N I L G H K L E Y N Y N S H N V Y I M gccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgagga <mark>c</mark>	1560
1561	A D K Q K N G I K V N F K I R H N I E D ggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtg	1620
1621	G S V Q L A D H Y Q Q N T P I G D G P V <mark>ctgctgcccgacaaccactacctgagctaccagtcc<mark>pac</mark>ctg<mark>tgc</mark>aaagaccccaacgag</mark>	1680
1681	L L P D N H Y L S Y Q S <mark>H</mark> L <mark>G</mark> K D P N E aagegegatcacatggteetggagttegtgaeegeeggegggateaeteteggeatg	1740
1741	K R D H M V L L E F V T A A G I T L G M <mark>gacgagctgtacaaag</mark> gtcgac <mark>aaggacgagctg</mark> taa <i>gcggccgc</i> act	1788
	<mark>delyk</mark> vd <mark>kdel</mark> –	

Supporting figure 6: Nucleotide and amino acid sequence of ER-eZinCh-2. The N-terminal PPI signal peptide and C-terminal retention sequence KDEL are depicted in green. Cerulean and citrine are colored cyan, and yellow, respectively. The flexible peptide linker is depicted in grey. The binding pocket of the sensor is depicted in red (206H and 208C).

1	cggcggctcccagtgccgcgcccaagatccattcgttgggggatctcatgtccgtcc	60
61	R R L P V P R A K I H S L G D L M S V L acgccgctgctgctggggggttggccggccggcggctccggcgg	120
121	agatecattegttgccgccgggggggggggtettcagggcgccaccatgggccat	180
181	A I H S S S A T M G H atggtgagcagggaggaggtggtggtgggtgggtgggccatc atggtgggggggggggggggggggggggggggggggg	240
241	ggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctac	300
301	G D V N G H K F S V S G E G D A I I ggcaagetgaceetgaagtteatetgeaceaceggtaagetgeeegtgeeetggeeecae C K I T I K F I C T T C K I D V D W D T	360
361	ctcgtgaccaccctgacctgggcgtgcatgcttcgcccgctaccccgaccactgaag	420
421	cagcacgacttetteaagtecegcetgecegaaggetaegtecaggagegeaceatette	480
481	T T T T T T T T T T T T T T T T T T T	540
541	gtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcac V N R I F I K G I D F K F D G N I I G H	600
601	agetggagtacaacgccatcagcgacaacgtctatcaccgccgacaagcagaagaac K L E V N A L S D N V V L T A D K O K N	660
661	ggcatcaaggccaacttcaagatccgccaacatcgaggacggccgcgcgcg	720
721	gaccactaccagcagaacacccccatcggcgacggccgccgtgctgctgctgcccgacaaccac D H Y O O N T P I G D G P V I I P D N H	780
781	tacctgagcacc cag tcc <mark>cac</mark> ctg tgc aaagacccccaacgagaagcgcgatcacatggtc Y L S T O S B L G K D P N E K R D H M V	840
841	ctgctggagttcgtgaccgccggggatcactctcggcatggacgagctgtacaagtcc	900
901	ggaggcggcgagctcattcgtggcggatccggcggaagcggcggatccggcggtagcggc	960
961	ggatccggctgctccggcggatccggcggcagcggcggatccggtggaagcggtggatcc	1020
1021	ggtggtagcggtggatccggtggaagcggtggatccggtggtagcggtggatccgggggt	1080
1081	ccgcggggctcggtaccc <mark>atggtgagcaagggcgaggagctgttcaccggggtggtgccc</mark> P R G S V P M V S K G E E L F T G V V P	1140
1141	atcctggtcgagctggacgtaaacggccacaagttcagcgtgtccgcgagggc	1200
1201	gagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctg E G D A T Y G K L T L K F I C T T G K L	1260
1261	cccgtgccctggcccacctcgtgaccaccttcggctacggcctgatgtgcttcgcccgc	1320
1321	taccccgaccacatgaagcaggacttcttcaagtccgccatgcccgaaggctacgtc Y P D H M K O H D F F K S A M P F G Y V	1380
1381	caggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgcgaggtgaag O E R T I F F K D D G N Y K T R A E V K	1440
1441	tcgagggggacacccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggac F E G D T L V N E I E L K G I D F K E D	1500
1501	ggcaacateetggggcacaagettgagtacaactaecaacageeacaaegtetatateatg G N I L G H K L E Y N Y N S H N V Y I M	1560
1561	gccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggac A D K O K N G I K V N F K I R H N I F D	1620
1621	ggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtg G S V O L A D H Y O O N T P I G D G P V	1680
1681	ctgctgcccgacaaccactacctgagctaccagtcccaacgag L L P D N H Y L S Y Q S H L C K D P N F	1740
1741	aagegegateacatggteetgetggagttegtgaeegeeggggateaeteteggeatg K R D H M V L L E F V T A A G I T L G M	1800
1801	gacgagctgtacaagtaagcggccgcact	1830

Supporting figure 7: Nucleotide and amino acid sequence of mito-eZinCh-2. The N-terminal signal sequence cytochrome *c* oxidase subunit VIII depicted in purple. Cerulean and citrine are colored cyan, and yellow, respectively. The flexible peptide linker is depicted in grey. The binding pocket of the sensor is depicted in red (206H and 208C).

1	gctggtttagtgaccgtcagatccgctagtaccatgggcatgtcggctaccgctgccacc	60
61	gtcccgcctgccgcccggccggcgggggggcccccctgcacttctccaatcttac	120
121	agtaacaggagactgcagacccaggcccaggtggatgaggtggacatcatgagg	180
181	gtgaatgtggacaaggtcctggagcgagaccagaagctatcggaactggatgatcgcgca	240
241	gatgccctccaggcaggggcctcccagttgaaacaagtgcagccaagcccaagcgcaaa	300
301	D A L Q A G A S Q F E T S A A K L K K K tactggtggaaaaacctcaagatgatgatcatcttgggagtgattdgcgccatcatcctc	360
361	Y W W K N L K M M I I L G V I C A I I L atcatcatcatcgtttacttcagcactggaggctccgctagcgccgccaccatgggccat	420
421	I I I I V Y F S T G G S A S A A T M G H atggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggac	480
481	M V S K G E E L F T G V V P I L V E L D ggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctac	540
541	G D V N G H K F S V S G E G E G D A T Y ggcaagctgaccctgaagttcatctgcaccaccggtaagctgcccgtgccctggcccacc	600
601	G K L T L K F I C T T G K L P V P W P T ctcgtgaccaccctgacctggggcgtgcagtgcttcgcccgctaccccgaccacatgaag	660
661	L V T T L T W G V Q C F A R Y P D H M K cagcacgacttetteaagteegeeatgeeegaaggetaegteeaggagegeaceatette	720
721	Q H D F F K S A M P E G Y V Q E R T I F ttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgaggggggacaccctg	780
781	F K D D G N Y K T R A E V K F E G D T L $qtqaaccqcatcqaqctqaaqqqcatcqacttcaaqqaqqacqqcaacatcctqqqqcac$	840
841	V N R I E L K G I D F K E D G N I L G H	900
901	K L E Y N A I S D N V Y I T A D K Q K N	960
961	G I K A N F K I R H N I E D G S V Q L A	1020
1021	D H Y Q Q N T P I G D G P V L P D N H	1020
1021	Y L S T Q S H L C K D P N E K R D H M V	1140
1081	CLGCLGGAGLLCGLGACCGCCGCGGGGALCACLCLCGGCALGGAGCLGLACAAGLCC L L E F V T A A G I T L G M D E L Y K S	1140
1141	ggaggcggcgagctcattcgtggcggatccggcggaagcggcggatccggcggtagcggc G G G E L I R G G S G G S G G S G G S G	1200
1201	ggatccggcggctccggcggatccggcggcgggatccggtggaagcggtggatcc G S G G S G G S G G S G G S G G S G G S	1260
1261	ggtggtagcggtggatccggtggaagcggtggatccggtggtagcggtggatccgggggt G G S G G S G G S G G S G G S G G S G G	1320
1321	ccgcggggctcggtaccc <mark>atggtgagcaagggcgaggagctgttcaccggggtggtgccc</mark> P R G S V P <mark>M V S K G E E L F T G V V P</mark>	1380
1381	ateetggtegagetggaeggegaegtaaaeggeeaeagtteagegtgteeggegaggge I L V E L D G D V N G H K F S V S G E G	1440
1441	gagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctg	1500
1501	cccgtgccctggcccacctcggctacggcctgatgtgcttcgccgc	1560
1561	taccccgaccacatgaagcagcacgacttetteaagtecgccatgecegaaggetaegte	1620
1621	aggagcgcaccatcttcttcaggacgacgacgacgacgacgacgacgacgacgacgacg	1680
1681	Q E R T I F F K D D G N Y K T R A E V K <mark>ttcgagggcgacaccctggtgaaccgcatcgagttgaagggcatcgacttcaaggaggag</mark>	1740
1741	F E G D T L V N R I E L K G I D F K E D ggcaacatcctggggcacaagcttgagtacaactacaacagccacaacgtctatatcatg	1800
1801	G N I L G H K L E Y N Y N S H N V Y I M gccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggac	1860
1861	A D K Q K N G I K V N F K I R H N I E D ggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtg	1920
1921	G S V Q L A D H Y Q Q N T P I G D G P V ctgctgcccgacaaccactacctgagctac cag tcc <mark>cac</mark> ctg <mark>tgc</mark> aaagaccccaacgag	1980
1981		2040
2041	K R D H M V L L E F V T A A G I T L G M	2010
2041	<mark>gaegagergeadag</mark> eaageggeegeaer D E L Y K -	∠070

Supporting figure 8: Nucleotide and amino acid sequence of VAMP2-eZinCh-2. VAMP2, cerulean, and citrine are colored army green, cyan and yellow respectively. The flexible peptide linker is depicted in grey. The binding pocket for Zn^{2+} is depicted in red (206H and 208C).

- Vinkenborg, J. L., Nicolson, T. J., Bellomo, E. A., Koay, M. S., Rutter, G. A., and Merkx, M. (2009) Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis, *Nat Methods* 6, 737-740.
- Chabosseau, P., Tuncay, E., Meur, G., Bellomo, E. A., Hessels, A., Hughes, S., Johnson, P. R., Bugliani, M., Marchetti, P., Turan, B., Lyon, A. R., Merkx, M., and Rutter, G. A. (2014) Mitochondrial and ER-targeted eCALWY probes reveal high levels of free Zn2+, ACS Chem Biol 9, 2111-2120.
- 3. Qin, Y., Dittmer, P. J., Park, J. G., Jansen, K. B., and Palmer, A. E. Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors, *Proc Natl Acad Sci U S A 108*, 7351-7356.
- 4. Park, J. G., Qin, Y., Galati, D. F., and Palmer, A. E. New sensors for quantitative measurement of mitochondrial Zn(2+), ACS Chem Biol 7, 1636-1640.