Supporting Information

for

Synthesis of icariin from kaempferol through regioselective methylation and *para*-Claisen–Cope rearrangement

Qinggang Mei^{1,2}, Chun Wang¹, Zhigang Zhao³, Weicheng Yuan² and Guolin Zhang^{*1}

Address: ¹Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China, ²Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China and ³College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, China

Email: Guolin Zhang* - zhanggl@cib.ac.cn

*Corresponding author

Experimental section and copies of NMR, ESI-HRMS, HMBC, HSQC, COSY and NOESY spectra

Contents	Page No.
Experimental section	S2–S11
¹ H NMR spectra of 1 , 2 , 3 , 7 , 8 , 9 , 10 , 12 , 14	S12–S20
¹³ C NMR spectra of 1 , 2 , 3 , 7 , 8 , 9 , 10 , 12 , 14	S21–S29
ESI-HRMS spectra of 1, 2, 3, 7, 8, 9, 10, 12, 14	S30–S38
HMBC spectra of 1 , 2 , 3 , 7 , 8 , 9 , 12 , 14	S39–S46
HSQC/COSY spectra of 1, 2, 14; NOESY Spectrum of 3	S47–S53

Experimental Section

Melting points were determined by an X-6 apparatus without correction. Optical rotations were measured with a Perkin-Elmer M341 automatic polarimeter. IR spectra were recorded on a Perkin-Elmer Spectrum One spectrometer (KBr disc) and NMR spectra on a Bruker AC-400 spectrometer (¹H: 400 MHz; ¹³C: 100 MHz) with DMSO-*d*₆ (δ 2.50/39.52) as solvent and internal standard at ambient temperature. The 2D NMR spectra (COSY, NOESY and ¹H-¹³C HMBC, HSQC) were conducted using standard software. The ESI-HRMS was carried out on a Bruker Bio TOF IIIQ (quadrupole time of flight) mass spectrometer. Preparative TLC was performed using commercially available precoated glass silica gel GF₂₅₄ plates of 0.15–0.2 mm thickness. Column chromatography was carried out with 200–300 mesh silica gel using the flash technique.

Unless otherwise specified, chemicals and solvents were of analytical reagent grade and used as obtained from commercial sources without further purification. Kaempferol was from Yangling Dongke Maidisen Pharmaceutical Co., Ltd., China. Icariin reference substance was purchased from Aladdin Reagent (Shanghai) Co., Ltd. DMF was dried with 4 Å molecular sieves and distilled at reduced pressure. PhCl was freshly distilled from sodium benzophenone ketyl prior to use. CH₂Cl₂ and CHCl₃ were freshly distilled over CaH₂ and acetone was freshly distilled from potassium carbonate prior to use.

Kaempferol was converted to 7-*O*-benzylkaempferide (**6**) following the reported procedure [1]. 2,3,4,6-Tetra-*O*-acetyl- α -D-glucopyranosyl bromide (**15**) and 2,3,4-tri-*O*-acetyl- α -L-rhamnopyranosyl bromide (**16**) were synthesized according to literature proecdures [2].

S2

3-O-Methoxymethyl-4'-O-methyl-7-O-benzylkaempferol (7)

To a solution of 7-O-benzylkaempferide (6, 3.12 g, 8 mmol) and iPr₂NEt (3.76 mL, 21.6 mmol) in CH₂Cl₂ (80 mL), chloromethyl methyl ether (0.85 mL, 11.2 mmol) was added at 0 °C. The mixture was stirred for 6 h at room temperature, and was acidified cautiously with 0.5 M HCl (aq) until pH = 5. The organic phase was washed with brine (50 mL), dried over MgSO₄, and evaporated under reduced pressure. The dried residue was recrystallized from EtOAc/95% ethanol (1:5) to provide 7 as yellow needles. Yield: 3.24 g (93%); mp: 116–117 °C. IR (cm⁻¹): 3444, 2919, 1664, 1607, 1497, 1351, 1306, 1265, 1221, 1174, 1082, 1025. ¹H NMR (400 MHz, DMSO-d₆) δ 12.55 (s, 1H, OH-5), 8.05 (d, J = 8.9 Hz, 2H, H-2'/6'), 7.47 (d, J = 7.3 Hz, 2H, H-2''/6'''), 7.41 (t, J = 7.3 Hz, 2H, H-3"'/5"'), 7.36 (d, J = 7.3 Hz, 1H, H-4"'), 7.15 (d, J = 8.9 Hz, 2H, H-3'/5'), 6.85 (d, J = 2.0 Hz, 1H, H-8), 6.48 (d, J = 2.0 Hz, 1H, H-6), 5.24 (s, 2H, H-7"'), 5.14 (s, 2H, OCH₂O), 3.86 (s, 3H, OCH₃-4'), 3.14 (s, 3H, CH₂OCH₃). ¹³C NMR (100 MHz, DMSO-d₆) δ 177.83 (C-4), 164.22 (C-7), 161.40 (C-4'), 160.94 (C-5), 156.40 (C-2), 156.34 (C-9), 136.06 (C-1"), 134.72 (C-3), 130.46 (C-2'/6'), 128.50 (C-3'''/5'''), 128.10 (C-4'''), 127.81 (C-2'''/6'''), 122.08 (C-1'), 114.06 (C-3'/5'), 105.24 (C-10), 98.52 (C-6), 97.19 (OCH₂O), 93.30 (C-8), 70.01 (C-7"), 57.04 (CH₂OCH₃), 55.44 (OCH₃-4'). ESI-HRMS m/z: 457.1258 [M+Na]⁺ (calcd for C₂₅H₂₂O₇Na: 457.1258).

3-O-Methoxymethyl-4'-O-methyl-5-O-isopentenyl-7-O-benzylkaempferol (8)

To a well stirred suspension of **7** (2.5 g, 5.76 mmol), 18-crown-6 (0.05 g, 0.19 mmol) and anhydrous potassium carbonate (2.07 g, 15 mmol) in dry acetone (70 mL), a solution of 3,3-dimethylallyl bromide (1.94 mL, 16.13 mmol) in dry acetone (8 mL) was added dropwise over 20 min at room temperature. The resulting suspension was continuously stirred for 19 h. After evaporation of the filtrate under reduced pressure,

the obtained yellow viscous oil was dissolved in CH₂Cl₂ and subjected to silica gel column chromatography with EtOAc/petroleum ether (1:3) as an eluent to offer an off-white solid. Recrystallization from CH₂Cl₂-95% ethanol (1:9) provided the desired compound **8** as off-white crystals. Yield: 2.49 g (86%); mp: 79–81 °C. IR (cm⁻¹): 2935, 1633, 1608, 1575, 1455, 1350, 1295, 1262, 1180, 1099, 1035, 826. ¹H NMR (400 MHz, DMSO- d_6) δ 8.02 (d, J = 8.9 Hz, 2H, H-2'/6'), 7.49 (d, J = 7.4 Hz, 2H, H-2''/6''), 7.42 (t, J = 7.4 Hz, 2H, H-3^{'''}/5^{'''}), 7.37 (t, J = 7.4 Hz, 1H, H-4^{'''}), 7.12 (d, J = 8.9 Hz, 2H, H-3'/5'), 6.88 (d, J = 2.1 Hz, 1H, H-8), 6.60 (d, J = 2.1 Hz, 1H, H-6), 5.47 (brs, 1H, H-2"), 5.24 (s, 2H, H-7""), 5.09 (s, 2H, OCH₂O), 4.62 (d, J = 6.5 Hz, 2H, H-1"), 3.85 (s, 3H, OCH₃-4'), 3.11 (s, 3H, CH₂OCH₃), 1.76 (s, 3H, H-5"), 1.72 (s, 3H, H-4"). ¹³C NMR (100 MHz, DMSO-d₆) δ 171.94 (C-4), 162.61 (C-7), 160.83 (C-4'), 159.50 (C-5), 158.16 (C-9), 152.40 (C-2), 136.86 (C-3"), 136.75 (C-3), 136.15 (C-1""), 129.99 (C-2'/6'), 128.50 (C-3'''/5'''), 128.12 (C-4'''), 127.93 (C-2'''/6'''), 122.53 (C-1'), 119.57 (C-2"), 113.92 (C-3'/5'), 108.67 (C-10), 97.55 (C-6), 96.68 (OCH₂O), 93.83 (C-8), 69.95 (C-7"), 65.86 (C-1"), 56.88 (CH₂OCH₃), 55.36 (OCH₃-4'), 25.44 (C-5"), 18.10 (C-4''). ESI-HRMS *m*/*z*: 503.2075 [M+H]⁺ (calcd for C₃₀H₃₁O₇: 503.2064).

3-O-Methoxymethyl-7-O-benzylicaritin (9) and 4-benzyloxy-2,3,3-trimethyl-7-(4-methoxyphenyl)-8-methoxymethoxy-2,3-dihydrofuro[2,3-*f*]chromen-9-one (12)

A solution of **8** (3 g, 5.98 mmol) in dry PhCl (80 mL) was mixed with Eu(fod)₃ (0.62 g, 0.6 mmol) and NaHCO₃ (0.5 g, 6 mmol) under nitrogen atmosphere. After stirring for 24 h at 85 °C, the mixture was cooled, filtered and evaporated to dryness. The dried residue was subjected to silica gel column chromatography eluting with petroleum ether/CH₂Cl₂/EtOAc (6:3:0.5). 8-Prenyl derivative **9** was obtained after evaporation of solvents. A diastereomeric mixture of dihydrofuro[2,3-*f*]chromone **12** was succeeded by further elution with acetone/petroleum ether (1:3).

Compound **9**: pale yellow powder, yield 1.84 g (61%), mp 151–153 °C. IR (cm⁻¹): 3438, 2924, 2853, 1652, 1610, 1594, 1438, 1377, 1301, 1253, 1178, 1087, 840. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.61 (s, 1H, OH-5), 8.02 (d, *J* = 9.0 Hz, 2H, H-2'/6'), 7.46 (d, *J* = 7.1 Hz, 2H, H-2''/6'''), 7.41 (t, *J* = 7.1 Hz, 2H, H-3'''/5'''), 7.35 (t, *J* = 7.1 Hz, 1H, H-4'''), 7.15 (d, *J* = 9.0 Hz, 2H, H-3'/5'), 6.66 (s, 1H, H-6), 5.26 (s, 2H, H-7'''), 5.15 (brs, 1H, H-2''), 5.12 (s, 2H, OCH₂O), 3.85 (s, 3H, OCH₃-4'), 3.46 (d, *J* = 6.6 Hz, 2H, H-1''), 3.11 (s, 3H, CH₂OC*H*₃), 1.60 (s, 6H, H-4''/5''). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 178.18 (C-4), 161.48 (C-7), 161.42 (C-4'), 159.45 (C-5), 156.44 (C-2), 152.87 (C-9), 136.34 (C-1'''), 134.34 (C-3), 131.41 (C-3''), 130.40 (C-2'/6'), 128.49 (C-3'''/5'''), 128.05 (C-4'''), 127.62 (C-2'''/6'''), 122.02 (C-1'), 121.92 (C-2''), 114.15 (C-3'/5'), 107.43 (C-8), 104.71 (C-10), 97.20 (OCH₂O), 96.33 (C-6), 70.20 (C-7'''), 57.04 (CH₂OCH₃), 55.47 (OCH₃-4'), 25.41 (C-5''), 21.35 (C-1''), 17.72 (C-4''). ESI-HRMS *m/z*: 503.2079 [M+H]⁺ (calcd for C₃₀H₃₁O₇: 503.2064).

Compound **12**: pale yellow glassy solid, yield 0.87 g (29%), mp 72–74 °C. IR (cm⁻¹): 2960, 2929, 1626, 1607, 1445, 1347, 1298, 1257, 1183, 1071, 943. ¹H NMR (400 MHz, DMSO- d_6) δ 8.00 (d, J = 9.0 Hz, 2H, H-2′′6′), 7.49 (d, J = 7.2 Hz, 2H, H-2′′′6′″), 7.44 (t, J = 7.2 Hz, 2H, H-3″′5″), 7.36 (t, J = 7.2 Hz, 1H, H-4″′), 7.12 (d, J = 9.0 Hz, 2H, H-3′′5′), 6.90 (s, 1H, H-8), 5.27 (s, 2H, H-7″′), 5.09 (s, 2H, OC H_2 O), 4.52 (q, J = 6.6 Hz, 1H, H-2″), 3.85 (s, 3H, OC H_3 -4′), 3.09 (s, 3H, CH₂OC H_3), 1.38 (s, H-4″ or 5″), 1.37 (d, J = 6.6 Hz, 3H, H-3″), 1.12 (s, 3H, H-4″ or 5″). ¹³C NMR (100 MHz, DMSO- d_6) δ 171.80 (C-4), 160.91 (C-4′), 158.89 (C-7), 157.55 (C-9), 156.76 (C-5), 153.67 (C-2), 136.37 (C-3), 136.31 (C-1″′), 130.10 (C-2′/6′), 128.59 (C-3″′/5″), 128.06 (C-4″″), 127.44 (C-2″″/6″″), 122.63 (C-1′), 119.50 (C-6), 113.92 (C-3′/5′), 105.44 (C-10), 96.69 (OCH₂O), 93.49 (C-8), 90.24 (C-2″), 69.94 (C-7″″), 56.88 (CH₂OCH₃), 55.39 (OCH₃-4′), 42.94 (C-1″), 25.15 (C-4″ or 5″), 20.71 (C-4″ or 5″), 13.96 (C-3″). ESI-HRMS m/z:

 $525.1900 [M+Na]^+$ (calcd for C₃₀H₃₀O₇Na: 525.1884).

7-O-Benzylicaritin (10)

To a solution of 9 (2.01 g, 4 mmol) in MeOH (120 mL), 3 M HCl (aq) (30 mL) was added under nitrogen atmosphere. The reaction mixture was refluxed for 2.5 h, and then half of the solvent was removed under reduced pressure. The residue was neutralized with saturated NaHCO₃ solution and retained for 12 h at room temperature. Abundant yellow precipitates were recovered by filtration. After washing with ethanol, the crude product was recrystallized from petroleum ether/EtOAc (4:1) to give 10 as yellow granules. Yield: 1.74 g (95%); mp: 185–187 °C. IR (cm⁻¹): 3304, 2928, 1648, 1616, 1590, 1552, 1511, 1317, 1261, 1171, 1076, 985. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.51 (s, 1H, OH-5), 9.61 (s, 1H, OH-3), 8.14 (d, J = 9.1 Hz, 2H, H-2'/6'), 7.46 (d, J = 6.9 Hz, 2H, H-2"'/6"'), 7.42 (t, J = 7.3 Hz, 2H, H-3"'/5"'), 7.35 (t, J = 7.1 Hz, 1H, H-4"'), 7.14 (d, J = 9.1 Hz, 2H, H-3'/5'), 6.64 (s, 1H, H-6), 5.26 (s, 2H, H-7"'), 5.15 (t, J = 6.9 Hz, 1H, H-2"), 3.84 (s, 3H, OC H_3 -4'), 3.49 (d, J = 6.9 Hz, 2H, H-1"), 1.63 (s, 3H, H-4"), 1.61 (s, 3H, H-5"). ¹³C NMR (100 MHz, DMSO- d_6) δ 176.53 (C-4), 161.20 (C-7), 160.66 (C-4'), 158.99 (C-5), 152.67 (C-9), 146.81 (C-2), 136.46 (C-1"'), 136.03 (C-3), 131.39 (C-3"), 129.34 (C-2'/6'), 128.52 (C-3"'/5"'), 128.07 (C-4"'), 127.65 (C-2"'/6"'), 123.48 (C-1'), 122.10 (C-2"), 114.18 (C-3'/5'), 107.21 (C-8), 103.73 (C-10), 95.79 (C-6), 70.20 (C-7"), 55.44 (OCH₃-4'), 25.46 (C-5"), 21.40 (C-1"), 17.77 (C-4"). ESI-HRMS *m*/*z*: 481.1620 [M+Na]⁺ (calcd for C₂₈H₂₆O₆Na: 481.1622).

Icaritin (3)

A mixture of **10** (1.37 g, 3 mmol), 10% palladium on carbon (1.5 g) and 1,4-cyclohexadiene (2.9 mL, 30 mmol) in MeOH (110 mL) was stirred at room temperature for 2 h, followed by filtration through celite, rinsed with EtOAc (20 mL).

The filtrate was concentrated and recrystallized from MeOH to afford pure icaritin (**3**) as yellow needles. Yield: 0.93 g (84%); mp: 207–208 °C; IR (cm⁻¹): 3319, 2927, 1626, 1603, 1536, 1422, 1379, 1318, 1257, 1178, 1149, 1036, 838; ¹H NMR (400 MHz, DMSO- d_6) δ 12.37 (s, 1H, OH-5), 10.74 (s, 1H, OH-7), 9.48 (s, 1H, OH-3), 8.12 (d, J = 9.1 Hz, 2H, H-2'/6'), 7.13 (d, J = 9.1 Hz, 2H, H-3'/5'), 6.29 (s, 1H, H-6), 5.17 (t, J = 6.9 Hz, 1H, H-2"), 3.84 (s, 3H, OC H_3 -4'), 3.43 (d, J = 6.9 Hz, 2H, H-1"), 1.75 (s, 3H, H-4"), 1.63 (s, 3H, H-5"); ¹³C NMR (100 MHz, DMSO- d_6) δ 176.22 (C-4), 161.22 (C-7), 160.47 (C-4'), 158.29 (C-5), 153.51 (C-9), 146.19 (C-2), 135.90 (C-3), 131.00 (C-3"), 129.16 (C-2'/6'), 123.55 (C-1'), 122.46 (C-2"), 114.09 (C-3'/5'), 105.62 (C-8), 103.06 (C-10), 97.81 (C-6), 55.38 (OCH₃-4'), 25.41 (C-5"), 21.18 (C-1"), 17.81 (C-4"); ESI-HRMS m/z: 369.1328 [M+H]⁺ (calcd for C₂₁H₂₁O₆: 369.1333). The ¹H and ¹³C NMR data of icaritin (**3**) were in agreement with those reported [3,4].

7-O-(2^{*m*},3^{*m*},4^{*m*},6^{*m*}-Tetra-O-acetyl-β-D-glucopyranosyl)icaritin (13)

To a stirred suspension containing **3** (0.8 g, 2.17 mmol), Ag₂CO₃ (0.78 g, 2.83 mmol) and molecular sieves (4 Å powder) (1.2 g) in a mixed-solvent of DMF (2 mL) and CHCl₃ (12 mL), **15** (1.16 g, 2.83 mmol) in CHCl₃ (6 mL) was added. The mixture was stirred in dark at room temperature for 30 h under nitrogen, then diluted with 10 mL of CHCl₃ and filtered through celite eluting with CHCl₃. The filtrate was extracted with 0.3 M HCl (aq) (25 mL), washed with saturated NaHCO₃ solution, brine and dried over MgSO₄. After evaporation of solvents, **13** was collected as yellow powder (1.13 g), which was used in the next step without further purification.

3-*O*-(2^{*m}</sup>,3^{<i>m}</sup>,4^{<i>m*}-Tri-*O*-acetyl-α-L-rhamnopyranosyl)-7-*O*-(2^{*m}</sup>,3^{<i>m*},4^{*m*},6^{*m*}-tetra-*O*-acetyl-β-D-glucopyranosyl)icaritin (14)</sup></sup></sup>

A mixture of the above powder **13** (0.89 g), rhamnose bromide **16** (0.66 g, 1.88 mmol), and Ag₂O (0.44 g, 1.88 mmol) was stirred in the presence of molecular sieves (4 Å powder) (1.5 g) in CH₂Cl₂ (20 mL) under nitrogen for 32 h, followed by filtration through celite and washed with CH₂Cl₂. The filtrate was concentrated under reduced pressure and the residue was purified over silica gel column chromatography with CH₂Cl₂/EtOAc (9:1). Compound **14** was collected as yellow needles. Yield: 514 mg (31%, for 2 steps); mp: 194–196 °C; $[\alpha]_{D}^{20}$ –111.8 (c 0.17, CHCl₃). IR (cm⁻¹): 2925, 1756, 1652, 1599, 1434, 1372, 1222, 1180, 1045. ¹H NMR (400 MHz, DMSO-d₆) δ 12.41 (s, 1H, OH-5), 7.87 (d, J = 9.0 Hz, 2H, H-2'/6'), 7.15 (d, J = 9.0 Hz, 2H, H-3'/5'), 6.64 (s, 1H, H-6), 5.72 (d, J = 7.9 Hz, 1H, H-1"), 5.53 (dd, J = 3.3, 1.6 Hz, 1H, H-2""), 5.47 (d, J = 1.6 Hz, 1H, H-1""), 5.42 (t, J = 9.6 Hz, 1H, H-3""), 5.18 - 5.10 (m, 2H, H-2"'/3""), 5.02 (t, J = 9.6 Hz, 2H, H-2"/4"), 4.79 (t, J = 10.0 Hz, 1H, H-4""), 4.41 -4.33 (m, 1H, H-5"), 4.21 (dd, J = 12.2, 6.4 Hz, 1H, H-6"b), 4.09 (d, J = 10.2 Hz, 1H, H-6"a). 3.85 (s, 3H, OCH₃-4'), 3.37 – 3.26 (m, 3H, H-1"/5""), 2.09 (s, 3H, CH₃COO), 2.04 (s, 3H, CH₃COO), 2.02 (s, 6H, 2×CH₃COO), 1.98 (s, 6H, 2×CH₃COO), 1.96 (s, 3H, CH₃COO), 1.62 (s, 3H, H-4"), 1.60 (s, 3H, H-5"), 0.77 (d, J = 6.2 Hz, 3H, H-6""). ¹³C NMR (100 MHz, DMSO- d_6) δ 177.94 (C-4), 170.08 (CH₃COO), 169.75 (CH₃COO), 169.72 (CH₃COO), 169.64 (CH₃COO), 169.54 (CH₃COO), 169.50 (CH₃COO), 169.16 (CH₃COO), 161.83 (C-4'), 159.15 (C-7), 159.12 (C-5), 157.99 (C-2), 153.28 (C-9), 134.02 (C-3), 131.73 (C-3"), 130.69 (C-2'/6'), 121.70 (C-1'), 121.59 (C-2"), 114.31 (C-3'/5'), 108.63 (C-8), 106.32 (C-10), 98.04 (C-6), 98.01 (C-1""), 96.80 (C-1""), 71.83 (C-3"), 71.15 (C-5"), 70.56 (C-2"), 69.37 (C-4""), 68.51 (C-2""), 68.26 (C-3""), 68.11 (C-4"'), 67.95 (C-5""), 61.78 (C-6"'), 55.67 (OCH₃-4'), 25.47 (C-5"), 21.23 (C-1"), 20.60 $(CH_{3}COO)$, 20.51 $(CH_{3}COO)$, 20.50 $(2 \times CH_{3}COO)$, 20.46 $(CH_{3}COO)$, 20.38 (2×CH₃COO), 17.85 (C-4"), 16.86 (C-6""). ESI-HRMS *m*/*z*: 971.3174 [M+H]⁺ (calcd for C₄₇H₅₅O₂₂: 971.3179).

Icariin (1)

The solution of compound 14 (0.44 g, 0.45 mmol) in 7.0 M methanolic ammonia (15 mL) was stirred at room temperature for 3 h. The solution was concentrated and kept overnight at room temperature. Yellow powdery crystals of **1** were collected by filtration, washed with petroleum ether, and dried in vacuum. Yield: 286 mg (94%); mp: 224–226 °C; $[\alpha]_{D}^{20}$ –120.0 (*c* 0.08, CH₃OH). IR (cm⁻¹): 3368, 2928, 1651, 1598, 1503, 1440, 1304, 1259, 1182, 1074. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.56 (s, 1H, OH-5), 7.89 (d, J = 9.0 Hz, 2H, H-2'/6'), 7.12 (d, J = 9.0 Hz, 2H, H-3'/5'), 6.62 (s, 1H, H-6), 5.41 (d, J = 4.7 Hz, 1H, OH-2"), 5.27 (d, J = 1.3 Hz, 1H, H-1""), 5.18 (d, J = 4.3 Hz, 1H, OH-3"), 5.14 (t, J = 7.6 Hz, 1H, H-2"), 5.11 (d, J = 5.4 Hz, 1H, OH-4"), 5.04 (d, J = 4.6 Hz, 1H, OH-2""), 5.00 (d, J = 7.4 Hz, H-1""), 4.79 (d, J = 4.9 Hz, 1H, OH-4""), 4.71 (d, J = 5.8 Hz, 1H, OH-3""), 4.68 (t, J = 5.5 Hz, 1H, OH-6"), 3.99 (t, J = 4.6 Hz, 1H, H-2""), 3.85 (s, 3H, OC H_3 -4'), 3.71 (dd, J = 10.1, 5.3 Hz, 1H, H-6'''b), 3.56 (dd, J = 14.6, 7.6 Hz, 1H, H-1"b), 3.51 - 3.47 (m, 1H, H-3""), 3.44 - 3.37 (m, 3H, H-1"a/5"/6"a, overlapped with H₂O), 3.31 – 3.27 (m, 2H, H-2"'/3"'), 3.19 – 3.02 (m, 3H, H-4"'/4"''/5""'), 1.68 (s, 3H, H-4"), 1.59 (s, 3H, H-5"), 0.77 (d, J = 6.0 Hz, 3H, H-6""); ¹³C NMR (100 MHz, DMSO-d₆) δ 178.39 (C-4), 161.52 (C-4'), 160.60 (C-7), 159.18 (C-5), 157.49 (C-2), 153.12 (C-9), 134.72 (C-3), 131.30 (C-3"), 130.71 (C-2'/6'), 122.34 (C-1'), 122.21 (C-2"), 114.20 (C-3'/5'), 108.41 (C-8), 105.69 (C-10), 102.06 (C-1""), 100.59 (C-1"), 98.21 (C-6), 77.27 (C-5"), 76.67 (C-3"), 73.45 (C-2"), 71.18 (C-4""), 70.83 (C-5""), 70.39 (C-3""), 70.18 (C-2""), 69.74 (C-4""), 60.71 (C-6""), 55.63 (OCH₃-4'), 25.59 (C-5"), 21.53 (C-1"), 17.98 (C-4"), 17.56 (C-6""). ESI-HRMS m/z: 699.2256 $[M+Na]^+$ (calcd for $C_{33}H_{40}O_{15}Na$: 699.2259). The ¹H and ¹³C NMR data of icariin (1) were in agreement with those reported [4,5].

Icariside I (2)

The yellow powder **13** (90 mg) was dissolved in 7.0 M methanolic ammonia (3 mL) and stirred at room temperature for 3 h. The solution was neutralized cautiously with 0.5 M HCl (aq) and left at room temperature for 12 h. The precipitates were collected by filtration and recrystallized from MeOH to furnish 2 as yellow needles. Yield: 58 mg (63%, for 2 steps); mp: 253–255 °C; $[\alpha]_D^{20} = -6.0$ (*c* 0.1, CH₃OH). IR (cm⁻¹): 3393, 2918, 1651, 1597, 1557, 1512, 1312, 1260, 1183, 1098. ¹H NMR (400 MHz, DMSO- d_6): δ 12.43 (s, 1H, OH-5), 9.63 (s, 1H, OH-3), 8.14 (d, J = 9.0 Hz, 2H, H-2'/6'), 7.14 (d, J = 9.0 Hz, 2H, H-3'/5'), 6.60 (s, 1H, H-6), 5.36 (d, J = 4.6 Hz, 1H, OH-2'''), 5.20 (t, J = 6.9 Hz, 1H, H-2"), 5.14 (d, J = 3.9 Hz, 1H, OH-3"), 5.08 (d, J = 5.3 Hz, 1H, OH-4"'), 5.00 (d, J = 7.1 Hz, 1H, H-1"'), 4.65 (t, J = 5.6 Hz, 1H, OH-6"'), 3.85 (s, 3H, OCH₃-4'), 3.73 – 3.62 (m, 2H, H-1"b/6"b), 3.50 – 3.44 (m, 3H, H-1"a/5"/6"a, overlapped with H₂O), 3.31 - 3.27 (m, 2H, H-2"'/3"'), 3.20 - 3.16 (m, 1H, H-4"'), 1.76 (s, 3H, H-4"'), 1.62 (s, 3H, H-5"'). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 176.58 (C-4), 160.71 (C-4'), 160.19 (C-7), 158.63 (C-5), 152.79 (C-9), 146.99 (C-2), 136.27 (C-3), 131.25 (C-3"), 129.44 (C-2'/6'), 123.47 (C-1'), 122.38 (C-2"), 114.21 (C-3'/5'), 108.11 (C-8), 104.55 (C-10), 100.50 (C-1"), 97.50 (C-6), 77.22 (C-5"), 76.66 (C-3"), 73.43 (C-2"), 69.71 (C-4"), 60.70 (C-6"), 55.48 (OCH₃-4'), 25.56 (C-5"), 21.50 (C-1"), 17.99 (C-4"). ESI-HRMS m/z: 531.1852 [M+H]⁺ (calcd for C₂₇H₃₁O₁₁: 531.1866). The ¹H and ¹³C NMR data of icariside I (2) were in agreement with those reported [6].

References

- Mei, Q. G.; Wang, C.; Yuan, W. C.; Zhang, G. L. *Beilstein J. Org. Chem.* 2015, *11*, 288–293.
- Li, Y.-W.; Li, Y.-X.; Zhang, W.; Guan, H.-S. Chin. J. Org. Chem. 2004, 24, 438–439.
- 3. Nguyen, V.-S.; Shi, L.; Li, Y.; Wang, Q.-A. Lett. Org. Chem. 2014, 11, 677–681.
- Dell'Agli, M.; Galli, G. V.; Dal Cero, E.; Belluti, F.; Matera, R.; Zironi, E.; Pagliuca, G.; Bosisio, E. *J. Nat. Prod.* 2008, *71*, 1513–1517.
- 5. Liu, R.; Li, A.; Sun, A.; Cui, J.; Kong, L. J. Chromatogr. A 2005, 1064, 53–57.
- 6. Han, B.; Shen, T.; Liu, D.; Yang, J. Chin. Pharm. J. 2002, 37, 740–742.

S21

Analysis Info

Analysis Name D:\Data\USER-2015\m4.d Method lc-ms-ljr-20111104.m Sample Name m4 Comment

Acquisition Date 1/21/2015 3:40:00 PM

Operator Ma Instrument / Ser# micrOTOF-Q II 10203

Elemental Composition Report

Single Mass Analysis Sample Name: mei 530 Tolerance = 5.0 PPM RDB: min = -10.0, max = 120.0 Selected filters: None

Monoisotopic Mass, Odd and Even Electron lons Elements Used:

Measured Mass: 531.1852

ldx	Formula	RDB	Delta ppm	
1	C27 H30 O11	12.5	-1.170	

Analysis Info

Analysis Name Method Sample Name

ne D:\Data\USER-2013\mei368.d WU_tune_low_20121222.m e mei368

Acquisition Date 10/15/2013 11:43:16 AM

Operator Ma Instrument / Ser# micrOTOF-Q II 10203

Bruker Compass DataAnalysis 4.0

printed:

d: 10/15/2013 11:55:22 AM

Analysis Info

Analysis Name Method Sample Name Comment

ne D:\Data\USER-2013\M-434.d WU_tune_low_20121222.m e M-434 Acquisition Date 5/14/2013 4:04:15 PM

Operator Ma Instrument / Ser# micrOTOF-Q II 10203

Acquisition Parameter lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF Positive 4500 V -500 V 150.0 Vpp Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Source Type Focus ESI 0.3 Bar 180 °C 4.0 I/min Not active Scan Begin Scan End 50 m/z 3000 m/z Source Intens. x10⁴ +MS, 0.5min #(27) 457.1258 1.2 .OMe 1.0 BnO 435.1441 0.8 омом όн ő 7 C₂₅H₂₂O₇ Exact Mass: 434.14 0.6-0.4

Bruker Compass DataAnalysis 4.0

printed: 5/14/2013 4:08:33 PM

Analysis Info

Analysis Name Method Sample Name Comment

me D:\Data\USER-2013\MEI502W.d WU_tune_low_20121222.m MEI502W Acquisition Date 5/28/2013 4:33:47 PM

Operator Ma Instrument / Ser# micrOTOF-Q II 10203

Acquisition Parameter Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF Positive 4500 V -500 V 150.0 Vpp ESI Not active Set Nebulizer Set Dry Heater Set Dry Gas 0.3 Bar 180 °C 4.0 l/min Source Type Focus Scan Begin 50 m/z 3000 m/z Scan End Set Divert Valve Source Intens. x10⁴ +MS, 0.2-0.3min #(12-15) 503.2075 OMe 3 BnO омом ö Ò

Bruker Compass DataAnalysis 4.0

printed: 5/28/2013 4:39:15 PM

Analysis Info

Analysis Name Method Sample Name Comment

503.2079

525.1893

1

Name D:\Data\USER-2013\MEI5022.d WU_tune_low_20121222.m Name MEI5022

> C 30 H 31 O 7 C 30 H 30 Na O 7

100.00

100.00

503.2064

525.1884

-3.0

-1.7

Acquisition Date 7/24/2013 5:40:20 PM

Operator Ma Instrument / Ser# micrOTOF-Q II 10203

Bruker Compass DataAnalysis 4.0

printed:

7/24/2013 5:48:04 PM

3.3 6.2

15.5

15.5

even

even

ok

ok

-2.7

-1.6

Analysis Info

Analysis Name Method Sample Name Comment

D:\Data\USER-2013\mei458.d WU_tune_low_20121222.m mei458

Acquisition Date 12/17/2013 6:34:30 PM

Operator Ma

Instrument / Ser# micrOTOF-Q II 10203

Acquisition Par	rameter				
Source Type	ESI	lon Polarity	Positive	Set Nebulizer	0.4 Bar
Focus	Not active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 I/min
Scan End	3000 m/z	Set Collision Cell RF	150.0 Vpp	Set Divert Valve	Source

Bruker Compass DataAnalysis 4.0

printed:

12/17/2013 6:39:42 PM

Analysis Info

Analysis Name Method Sample Name Comment

ne D:\Data\USER-2013\MEI5021.d WU_tune_low_20121222.m e MEI5021 Acquisition Date 7/24/2013 5:38:11 PM

Operator Ma Instrument / Ser# micrOTOF-Q II 10203

Bruker Compass DataAnalysis 4.0

printed: 7/24/2013 5:46:56 PM

Analysis Info

Analysis Name Method Sample Name Comment D:\Data\USER-2015\m970.d tune_wide.m m970 Acquisition Date 2/4/2015 4:27:19 PM

Operator Ma

Instrument / Ser# micrOTOF-Q II 10203

meter				
ESI	Ion Polarity	Positive	Set Nebulizer	0.3 Bar
Active	Set Capillary	4500 V	Set Dry Heater	180 °C
50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min
3000 m/z	Set Collision Cell RF	650.0 Vpp	Set Divert Valve	Source
				+MS, 0.3-0.6min #(20-33)
	Ameter ESI Active 50 m/z 3000 m/z	ameter ESI Ion Polarity Active Set Capillary 50 m/z Set End Plate Offset 3000 m/z Set Collision Cell RF	Ion Polarity Positive Active Set Capillary 4500 V 50 m/z Set End Plate Offset -500 V 3000 m/z Set Collision Cell RF 650.0 Vpp	Image: Set Set Set Set Capillary Positive Set Nebulizer Active Set Capillary 4500 V Set Dry Heater 50 m/z Set End Plate Offset -500 V Set Dry Gas 3000 m/z Set Collision Cell RF 650.0 Vpp Set Divert Valve

HMBC Spectrum of Compound 9

NOESY Spectrum of Compound 3

