
S1 text1

In S1 text, we provide details for the stochastic optimal control framework used to model2

reaching movements to single targets.3

1 Hand modeling.4

We modeled the dynamics of the hand as a “point of mass” (m = 1 Kg), in Cartesian coordinates,5

with 2-dimensional position pht = [xh(t), yh(t)]
T and velocity ṗht = [ẋh(t), ẏh(t)]

T [1]. The com-6

bined actions of all muscles is represented by the force vector ft = [fx(t), fy(t)]
T . Neural control7

ut is transformed into these forces ft through second-order muscle-like low-pass filters with con-8

stants τ1 and τ2, and by adding control-dependent multiplicative noise [1].9

τ1τ2f̈t + (τ1 + τ2)ḟt + ft = ut (1)

The second-order low pass filters can be written as a pair of coupled first-order filters with10

outputs g and f, as:11

τ1ġt + gt = ut, τ2ḟt + ft = gt (2)

Assuming that the target position is on pG = [xG, yG]T , the discrete-time state is described12
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through a 10th-dimensional vector xt, Eq. (3).13

xt = [xh(t), yh(t), ẋh(t), ẏh(t), fx(t), fy(t), gx(t), gy(t), xG, yG]T (3)

The discrete-time dynamics of the hand are given by Eq. (4):14

pht+δt = pht + ṗht δt

ṗht+δt = ṗht + ft
δt

m

ft+δt = ft

(
1− δt

τ2

)
+ gt

δt

τ2

gt+δt = gt

(
1− δt

τ1

)
+ ut (1 + σcεt)

δt

τ1

(4)

where δt = 0.01s is the sampling period of discretization. The product term σcεtut describes15

the multiplicative noise added to the control signal ut, with σc = 1, which is a unitless variable16

defined as the noise magnitude related to the control signal magnitude [1].17

2 Reaching to a single target.18

Within the stochastic optimal control framework, control policies originate as the solution to an19

optimization problem. The basic idea is to find a sequence of motor commands that acquire as20
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much reward as possible, while spending as little effort as possible. For reaching, given the arm’s21

kinematics and the sensory and motor noise in estimating and controlling state of the hand, the22

stochastic optimal control finds a policy u∗t = π∗(xt), for time instances t = [t1, . . . , tend] that23

optimizes the cost function J described in Eq. (5), for each state of the hand and the environment24

xt.25

J(xt, π(xt)) = ‖phtend
− pG‖2 + ‖ṗhtend

‖2 + ‖ftend
‖2 +

tend−1∑
t=1

π(xt)
TRπ(xt) (5)

The first term is the accuracy cost and penalizes policies that drive the end-point of the26

reaching trajectory away from the target position pG. The second and the third terms specify that27

the reaching movement should stop at time tend and the last term is the motor command cost that28

penalizes the effort required to reach the target. The matrix R = 1
tend

 rx 0

0 ry

 is the control-29

dependent cost of the hand motion in the x and y dimension (rx = ry = 0.001).30

We can write Eq. (5) in the general form of optimal control cost function as follows:31

J =
(
xtend

− SpG
)T
Qtend

(
xtend

− SpG
)

+

tend−1∑
t=1

π(xt)
TRπ(xt) (6)

where S is a matrix that picks out the hand and target positions from the state vector. The32

time-varying matrix Qt describes the state-dependent cost and is the zero matrix for any time33
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t < tend and is equal to the Hessian matrix of the cost function evaluated at the end of the movement34

tend.35

To minimize the cost function in Eq. (6), a model of the system dynamics and sensory feed-36

back must be incorporated. Abundant evidence suggests the sensory system uses internal forward37

models that predict the next state at time t+ 1, x̂t+1|t, based on the sensory feedback yt, the current38

state estimate x̂t and the control commands ut [2], which helps overcome control instabilities due39

to noisy sensors and temporal delays. Following, we modeled the hand and the state space using40

linear dynamics and measurement as a discrete linear system, Eq. (7), considering the motor com-41

mands are corrupted by multiplicative noise, normally distributed with zero mean and standard42

deviation proportional to the magnitude of the control commands and the state variables [1].43

xt+1 = Axt +But + ξt + C(ut)εt

yt = Hxt + ωt (7)

where A, B and H are the actual system dynamics and observation matrices, respectively.44
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A=



1 0 δt 0 0 0 0 0 0 0

0 1 0 δt 0 0 0 0 0 0

0 0 1 0 δt
m 0 0 0 0 0

0 0 0 1 0 δt
m 0 0 0 0

0 0 0 0 1− δt
τ2

0 δt
τ2

0 0 0

0 0 0 0 0 1− δt
τ2

0 δt
τ2

0 0

0 0 0 0 0 0 1− δt
τ1

0 0 0

0 0 0 0 0 0 0 1− δt
τ1

0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1


45

B =



06×2

δt
τ1

0

0 δt
τ1

02×2



, H =

 I6×6 | 06×4

 (8)

46

The noise variables ξt, ωt and εt are normally distributed variables with zero mean and co-47

variance Ωξ ≥ 0, Ωω ≥ 0 and Ωε = I , respectively. C(ut) is a scaling matrix for control-dependent48
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system noise, such as C(u)ε =
∑

iCiuε
i, where εi is the ith component of the random variable ε.49

Given the belief about the state at time t and the goal of the task, the stochastic optimal50

controller generates the optimal policy - the best sequence of actions that we can perform to reach51

the goal - π∗ (xt) = u∗t that minimizes the expected cost function in Eq. (5). This form of optimal52

control is a modified Linear Quadratic Gaussian (LQG) regulator, since the dynamics of the system53

are linear, the expected cost function is Quadratic and the noise is Gaussian, but with signal-54

dependent noise [1].55

Incorporating the optimal policy into the system model generates a feedback controller that56

uses its forward model to generate predictions ŷt from knowledge of controls, dynamics and sen-57

sory measurements, and it combines predictions with sensory feedback yt via Eq. (9) to update the58

belief about the state in time t+ 1.59

x̂t+1|t+1 = (A−BLt)x̂t+1|t +Kt

(
yt −Hx̂t+1|t

)
(9)

where Kt describes the Kalman gain at the given time t.60
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