S3 text

One of the key computations in the present framework is the transformation of the value 2 function $V_{\pi_i}(\mathbf{x}_t)$ to probability value using a soft-max type equation (see Eq. 3 and Eq. 4 in the 3 main manuscript). It characterizes the probability of spending at least effort $V_{\pi_j}(\mathbf{x}_t)$ starting from 4 the current state \mathbf{x}_t at time t and adopting the policy $\pi_j(\mathbf{x}_t)$ to move to the target j. The free param-5 eter in this transformation is the inverse temperature λ . The values of λ were chosen empirically, 6 but the qualitatively predictions presented in the manuscript are relative robust to the chosen val-7 ues of λ . Note that the same value of λ was used in every simulated experiment. Particularly, we 8 set $\lambda = 0.1$ for the rapid-reaching experiments, $\lambda = 0.01$ for the eye-movement experiments and 9 $\lambda = 0.5$ for the sequential reaching (i.e., copy geometrical shapes) experiment. 10