
 

Supplementary Table 1: Features used by the learning-based region merging model of our nuclei segmentation 
algorithm 
 
Appearance Similarity  
Features 

Brightness similarity We first compute the median intensities of the two regions and then 
compute the ratio between the minimum of the two median intensity values 
with the maximum of the two values. 

Similarity of Intensity 
Distributions 

We compute the 64-bin intensity histogram for each of the two regions and 
measure the similarity between the two histograms using the well-known 
bhattacharya-coefficient. 

Texture Similarity We compute nine haralick texture features (Contrast, Homogeneity, 
Energy, Entropy, Correlation, AutoCorrelation, ClusterShade, 
ClusterProminence, MaximumProbability) for each of the two regions at 3 
different scales (GLCM neighborhood offsets of 1, 2, and 4 voxels with the 
offsets along z-axis adjusted depending on the anisotropy in the voxel size) 
resulting in a 27-dimensional vector that quantifies the texture of the 
region. The similarity in texture between the two regions is then computed 
using the cosine similarity measure. 

Boundary Saliency 
Features 

Watershed saliency  
 
(quantifies the 
amount of edge 
information in the 
watershed region) 

Let R1 and R2 be the given pair of adjacent 
regions and let R12 be a dilated version of the 
common boundary shared between them which we 
henceforth refer to as the watershed region (see 
2D illustration on right). 
We quantify the saliency or edgeness of the 
watershed region using two types of measures: 

• Ratio of the median intensity (M_R12) of the watershed region 
with the median intensities  (M_R1 and M_R2) of each of the 
given pair of adjacent regions. Specifically, we use as features the 
ratio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) 
maximum of M_R1 and M_R2. 

• Ratio of inter-quartile range (IQR_R12) of the watershed region 
with the inter-quartile ranges (IQR_R1 and IQR_R2) of the given 
pair of adjacent regions. Specifically, we use as features the ratio 
of IQR_R12 with (i) minimum of IQR_R1 and IQR_R2, and (ii) 
maximum of IQR_R1 and IQR_R2. 

Boundary Continuity  
Features 
 
These features quantify 
the likelihood of 
merging the two given 
regions from a 
geometric point of view 

Amount of common 
boundary 

We first compute an estimate of areas of the bounding surfaces (A1 and 
A2) of the two given regions and the area of the common boundary (A12) 
shared by both of them. We then use as features the ratio of A12 with (i) 
minimum of A1 and A2, and (ii) maximum of A1 and A2.  
 
Shown below is a 2D schematic illustrating how this feature could help in 
determining whether or not the merge a given pair of adjacent regions 
 

 
 

Convexity Measures We often observed that when a given pair of adjacent regions belong to 
two distinct nuclei then merging them results in a highly non-convex 
region. To capture this insight, we use as features (i) convexity of the 
merged region,  and (ii) the ratio of the convexity of the merged region 
with the convexity values of the individual regions. 



 

Gap between the 
bounding surfaces of 
the two regions 
 

Here, we intend to measure the gap created by the 
watershed algorithm between the given pair of 
adjacent regions (see green region in 2D 
illustration on right). Because of the anisotropic 
voxel spacing in our data, this gap varies 
depending on the way two adjacent regions touch 
each other geometrically in 3D.  
 
To quantify the gap, we first consider one of the two given regions as the 
reference region and determine the part of its boundary that 
touches/interacts with the other region, which we denote here as B. For 
each voxel in B, we compute the distance, in physical space (microns), to 
the closest voxel on the boundary of the other region. We then compute the 
minimum, maximum, mean, and standard deviation of these distance 
values as features. 

Junction/Neck 
Curvature 

We compute a coarse estimate of the curvature at 
each voxel on the neck (see blue pixels in 2D 
illustration on right). Specifically, for each voxel 
p on the neck, we compute the fraction of 
foreground (cell nuclei) voxels inside a sphere of 
a specified size centered at the neck voxel, which 
we denote as Vin(p).  
 
When the continuity between the bounding surfaces of the two given 
regions at a neck voxel is smooth (see 2D schematic in Fig. (a) below) 
approximately 50% of the voxels inside the sphere will belong to the 
foreground and when the continuity between the two bounding surfaces at 
a neck voxel is non-smooth (see 2D schematics in Figs. (b) and (c) below). 
Based on this insight, we compute the curvature at a neck voxel p as C(p) 
=|Vin(p) - 0.5| where |.| denotes the absolute value. Observe that C(p) will 
be close to zero whenever the continuity is smooth and increases as the 
continuity is non-smooth. 
 

 
 
We compute the aforementioned curvature measure for all junction voxels 
and then compute the min, max, mean, and standard deviation of these 
values as features. 

 
 

  



 

Supplementary Table 2: Performance statistics of the nuclei segmentation algorithm 
 Mean +/- stddev (%) Range (%) 
Segmentation Accuracy 91.04	
  +/-­‐	
  4.87	
   [77.61,	
  97.89]	
  
Over-segmentation Errors 3.82	
  +/-­‐	
  2.65	
   [0.70	
  14.00]	
  
Under-segmentation Errors 4.91	
  +/-­‐	
  3.42	
   [0.00	
  12.68]	
  
 
 
Supplementary Table 3: Comparison of segmentation accuracy obtained using our nuclei segmentation 

algorithm with and without region merging on a small 5-volume test dataset 
 Mean +/- stddev (%) Range (%) 
Proposed method with region merging 94.76	
  +/-­‐	
  2.14	
   [92.59,	
  97.88]	
  
Proposed method without region merging 87.70	
  +/-­‐	
  2.11	
   [84.23,	
  89.87]	
  
 
  



 

Supplementary Table 4: Features used for cell cycle state identification 
 
Histone Features Intensity statistics  

 
(computed from the voxels inside cell 
mask in the histone channel) 

Entropy of 8-bin histogram 
Median intensity 
Median absolute deviation (MAD) 
Inter-quartile range (IQR) 
Robust measure of skewness* 
Robust measure of kurtosis* 
Median of Local standard deviation in a 3x3 neighborhood 

Haralick texture features at 4 scales 
 
(Intensities of the cell voxels were 
normalized using the minimum and 
maximum intensities of the cell; Gray-
level Co-occurence Matrix  was computed 
in a rotation invariant fashion using 64 
gray-levels and neighborhood offsets of 1, 
2, 4, and  8 voxels wherein the offset in Z-
dimension was adjusted based on the 
anisotropy in the voxel spacing) 

Contrast 
Homogeneity 
Energy  
Entropy 
Correlation 
AutoCorrelation 
ClusterShade 
ClusterProminence 
MaximumProbability 
 
 

Shape features  
 
(computed both from the cell mask in 3D 
and its maximum intensity projection 
(MIP) along the z-axis) 

Convexity of MIP 
Eccentricity of MIP 
Circularity of MIP 
3D convexity 
 

FUCCI Features Intensity statistics  
 
(computed separately from the voxels 
inside the cell mask in FUCCI-GFP and 
FUCCI-RFP channels) 

Entropy of 8-bin histogram 
Median intensity 
Median absolute deviation 
Inter-quartile range 
Robust measure of skewness 
Robust measure of kurtosis 
Median of Local standard deviation in a 3x3 neighborhood 

Cross-channel ratios of a selected set of 
intensity statistics 

Ratio of median intensity in FUCCI-GFP and Histone 
Ratio of MAD in FUCCI-GFP and Histone 
Ratio of IQR in FUCCI-GFP and Histone 
 
Ratio of median intensity in FUCCI-RFP and Histone 
Ratio of MAD in FUCCI-RFP and Histone 
Ratio of IQR in FUCCI-RFP and Histone 
 
Ratio of median intensity in FUCCI-RFP and FUCCI-GFP 
Ratio of MAD in FUCCI-RFP and FUCCI-GFP 
Ratio of IQR in FUCCI-RFP and FUCCI-GFP 

Cross-channel colocalization measures 
using the pearson correlation coefficient 

Pearson correlation between FUCCI-GFP and Histone 
Pearson correlation between FUCCI-RFP and Histone 
Pearson correlation between FUCCI-GFP and FUCCI-RFP 

 
*Kim, T.-H. & White, H. On more robust estimation of skewness and kurtosis. Finance Research Letters 1, 56-73 (2004). 

  



 

Supplementary Table 5: Confusion matrix for the 4-class cell cycle state identification model 
Human\Computer G1  Late G1/Early S  S/G2  mitotic  

G1  2801 173 30 8 
Late G1/Early S  40 550 8 3 
G2  12 100 630 45 
M  1 5 19 382 
 
Supplementary Table 6: Per-class performance of the 4-class cell cycle state identification model 
 Precision  Recall  F-Measure  

G1  0.98 0.93 0.95 
Late G1/Early S  0.66 0.92 0.77 
G2  0.92 0.80 0.85 
M  0.87 0.94 0.90 
 
Supplementary Table 7: Overall performance of the 4-class cell cycle state identification model 
 Accuracy Average 

Precision  
Average Recall  Average F-Measure  

10-fold CV on Training dataset 91.72% 0.88 0.91 0.89 
Test dataset 90.76% 0.86 0.90 0.87 
 

  



 

Supplementary Table 8: Confusion matrix for the Interphase vs mitotic classification model 
Human\Computer Interphase  Mitotic 

Interphase 4287 113 
Mitotic 11 396 
 
Supplementary Table 9: Per-class performance of the Interphase vs Mitotic classification model 
 Precision  Recall  F-Measure  

Interphase 0.99 0.97 0.99 
Mitotic 0.78 0.97 0.86 
 
Supplementary Table 10: Overall performance of the Interphase vs Mitotic classification model 
 Accuracy Average Precision  Average Recall  Average F-Measure  

10-fold CV on Training dataset 96.22% 0.89 0.97 0.92 
Test dataset 97.42% 0.89 0.97 0.93 
 

  



 

Supplementary Table 11: Confusion matrix for the G1 vs S/G2/M classification model 
Human\Computer G1 S/G2/M 

G1 2901 111 
S/G2/M 99 1696 
 
Supplementary Table 12: Per-class performance of the G1 vs S/G2/M classification model 
 Precision  Recall  F-Measure  

G1 0.97 0.96 0.97 
S/G2/M 0.94 0.94 0.94 
 
Supplementary Table 13: Overall performance of the G1 vs S/G2/M classification model 
 Accuracy Average 

Precision  
Average Recall  Average F-Measure  

10-fold CV on Training dataset 97.04% 0.97 0.97 0.97 
Test dataset 95.63% 0.95 0.95 0.95 
 
  



 

 


