Supplementary Table 1: Features used by the learning-based region merging model of our nuclei segmentation algorithm

Features Frequences similarity Frequences similarity Frequences similarity Features Similarity of Intensity We compute the factor between the minimum of the two regions and bistributions Distributions Bistributions Bistributions Bistributions Texture Similarity We compute the 64-bin intensity histogram for each of the two regions and bistributions Distributions Distributions Bistributions Texture Similarity We compute nine haralick texture features (Contrast, Homogeneity, Energy, Entropy, Correlation, AtucCorrelation, ClusterShade, ClusterProminence, MaximumProbability) for each of the two regions at 3 different scales (GLCM neighborhood offsets of 1, 2, and 4 voxels with the offsets along z-axis adjusted depending on the anisotropy in the voxel size) resulting in a 27-dimensional vector that quantifies the texture of the region. The similarity in texture between the two regions is then compute using the cosine similarity measure. Boundary Saliency Watershed saliency Let R1 and R2 be the given pair of adjacent region sind let R12 be a dilated version of the woreshed region watershed region using two types of measures: Features Quantifies the amount of edge information in the watershed region using two types of measures: Image: R12 bit R1
Partnets Compute the fail of the two values. Similarity of Intensity Distributions We compute the 64-bin intensity histogram for each of the two regions and measure the similarity between the two histograms using the well-known bhattacharya-coefficient. Texture Similarity We compute nine haralick texture features (Contrast, Homogeneity, Energy, Entropy, Correlation, AutoCorrelation, ClusterShade, ClusterProminence, MaximumProbability) for each of the two regions at 3 different scales (GLCM neighborhood offsets of 1, 2, and 4 voxels with the offsets along z-axis adjusted depending on the anisotropy in the voxel size) resulting in a 27-dimensional vector that quantifies the texture of the region. The similarity measure. Boundary Saliency Features Watershed saliency (quantifies the amount of edge information in the watershed region) Let R1 and R2 be the given pair of adjacent regions and let R12 be a dilated version of the watershed region using two types of measures: • Ratio of the median intensity (M_R12) of the watershed region with the mariatio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) maximum of M_R1 and M_R2. • Ratio of inter-quartile ranges (IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2, and (ii)
Similarity of Intensity With the maximum of the two with. Similarity of Intensity We compute the 64-bin intensity histogram for each of the two regions and measure the similarity between the two histograms using the well-known bhattacharya-coefficient. Texture Similarity We compute inne haralick texture features (Contrast, Homogeneity, Energy, Entropy, Correlation, AutoCorrelation, ClusterShade, ClusterProminence, MaximumProbability) for each of the two regions at 3 different scales (GLCM neighborhood offsets of 1, 2, and 4 voxels with the offsets along z-axis adjusted depending on the anisotropy in the voxel size) resulting in a 27-dimensional vector that quantifies the texture of the region. The similarity in texture between the two regions is then computed using the cosine similarity measure. Boundary Saliency Watershed saliency Features Watershed saliency Watershed region) Let R1 and R2 be the given pair of adjacent regions and let R12 be a dilated version of the common boundary shared between them which we henceforth refer to as the watershed region (see 2D illustration on right). We quantify the saliency or edgeness of the watershed region with the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R1 and M_R2. • Ratio of inter-quartile range (IQR_R1 and IQR_R2, and (ii) maximum of M_R1 and M_R2. • Ratio of inter-quartile range (IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2, and (iii) maximum of IQR_R1 and IQR_R2, and (iii) m
Similarity of intensity we compute the 64-on intensity insogram for each of the two regions and measure the similarity between the two histograms using the well-known bhattacharya-coefficient.Texture SimilarityWe compute nine haralick texture features (Contrast, Homogeneity, Energy, Entropy, Correlation, AutoCorrelation, ClusterShade, ClusterProminence, MaximumProbability) for each of the two regions at 3 different scales (GLCM neighborhood offsets of 1, 2, and 4 voxels with the offsets along z-axis adjusted depending on the anisotropy in the voxel size) resulting in a 27-dimensional vector that quantifies the texture of the region. The similarity measure.Boundary Saliency FeaturesWatershed saliency (quantifies the amount of edge information in the watershed region)Let R1 and R2 be the given pair of adjacent regions and let R12 be a dilated version of the common boundary shared between them which we henceforth refer to as the watershed region (see 2D illustration on right). We quantify the saliency or edgeness of the watershed region with the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) maximum of M_R1 and M_R2.Boundary ContinuityAmount of commonWe first compute an estimate of areas of the bounding surfaces (A1 and
DistributionsIncasure the similarity between the two instograms using the well-known bhattacharya-coefficient.Texture SimilarityWe compute nine haralick texture features (Contrast, Homogeneity, Energy, Entropy, Correlation, AutoCorrelation, ClusterShade, ClusterProminence, MaximumProbability) for each of the two regions at 3 different scales (GLCM neighborhood offsets of 1, 2, and 4 voxels with the offsets along z-axis adjusted depending on the anisotropy in the voxel size) resulting in a 27-dimensional vector that quantifies the texture of the region. The similarity in texture between the two regions is then computed using the cosine similarity measure.Boundary Saliency FeaturesWatershed saliency (quantifies the amount of edge information in the watershed region)Let R1 and R2 be the given pair of adjacent regions and let R12 be a dilated version of the common boundary shared between them which we henceforth refer to as the watershed region (see 2D illustration on right). We quantify the saliency or edgeness of the watershed region using two types of measures: • Ratio of the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) maximum of M_R1 and M_R2.Boundary ContinuityAmount of commonWe first compute an estimate of areas of the bounding surfaces (A1 and
Texture SimilarityWe compute nine haralick texture features (Contrast, Homogeneity, Energy, Entropy, Correlation, AutoCorrelation, ClusterShade, ClusterProminence, MaximumProbability) for each of the two regions at 3 different scales (GLCM neighborhood offsets of 1, 2, and 4 voxels with the offsets along z-axis adjusted depending on the anisotropy in the voxel size) resulting in a 27-dimensional vector that quantifies the texture of the region. The similarity in texture between the two regions is then computed using the cosine similarity measure.Boundary Saliency FeaturesWatershed saliency (quantifies the amount of edge information in the watershed region)Let R1 and R2 be the given pair of adjacent regions and let R12 be a dilated version of the common boundary shared between them which we henceforth refer to as the watershed region (see 2D illustration on right).We quantify the saliency or edgeness of the watershed region using two types of measures: • Ratio of the median intensity (M_R12) of the watershed region with the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) maximum of M_R1 and M_R2.Boundary ContinuityAmount of commonWe first compute an estimate of areas of the bounding surfaces (A1 and
Iexture SimilarityWe compute nine haralick texture features (Contrast, Homogeneity, Energy, Entropy, Correlation, AutoCorrelation, ClusterShade, ClusterProminence, MaximumProbability) for each of the two regions at 3 different scales (GLCM neighborhood offsets of 1, 2, and 4 voxels with the offsets along z-axis adjusted depending on the anisotropy in the voxel size) resulting in a 27-dimensional vector that quantifies the texture of the region. The similarity in texture between the two regions is then computed using the cosine similarity measure.Boundary Saliency FeaturesWatershed saliency (quantifies the amount of edge information in the watershed region)Let R1 and R2 be the given pair of adjacent regions and let R12 be a dilated version of the common boundary shared between them which we henceforth refer to as the watershed region (see 2D illustration on right).We quantify the saliency or edgeness of the watershed region using two types of measures:•Ratio of the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R1 and M_R2.•Ratio of inter-quartile range (IQR_R1 and IQR_R2) of the given pair of adjacent regions. Specifically, we use as features the ratio of IQR_R12 with (i) minimum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2.Boundary ContinuityAmount of commonWe first compute an estimate of areas of the bounding surfaces (A1 and
Boundary Saliency FeaturesWatershed saliency (quantifies the amount of edge information in the watershed region)Let R1 and R2 be the given pair of adjacent regions and let R12 be a dilated version of the common boundary shared between them which we henceforth refer to as the watershed region (see 2D illustration on right).Image: Common boundary shared between the watershed region watershed region)We quantify the saliency (quantifies the amount of edge information in the watershed region)Let R1 and R2 be the given pair of adjacent regions and let R12 be a dilated version of the common boundary shared between them which we henceforth refer to as the watershed region (see 2D illustration on right).We quantify the saliency or edgeness of the watershed region)We quantify the saliency or edgeness of the watershed region sing two types of measures:•Ratio of the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R1 and M_R2.•Ratio of inter-quartile range (IQR_R12) of the watershed region with the inter-quartile ranges (IQR_R1 and IQR_R2) of the given pair of adjacent regions. Specifically, we use as features the ratio of IQR_R12 with (i) minimum of IQR_R1 and IQR_R2, and (ii) maximum o
ClusterProminence, MaximumProbability) for each of the two regions at 3 different scales (GLCM neighborhood offsets of 1, 2, and 4 voxels with the offsets along z-axis adjusted depending on the anisotropy in the voxel size) resulting in a 27-dimensional vector that quantifies the texture of the region. The similarity in texture between the two regions is then computed using the cosine similarity measure.Boundary Saliency FeaturesWatershed saliency (quantifies the amount of edge information in the watershed region)Let R1 and R2 be the given pair of adjacent regions and let R12 be a dilated version of the common boundary shared between them which we henceforth refer to as the watershed region (see 2D illustration on right). We quantify the saliency or edgeness of the watershed region using two types of measures:Image: R1 and M_R2) of the watershed region with the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) maximum of M_R1 and M_R2.Boundary ContinuityAmount of commonWe first compute an estimate of areas of the bounding surfaces (A1 and
Boundary Saliency FeaturesWatershed saliency (quantifies the amount of edge information in the watershed region)Let R1 and R2 be the given pair of adjacent regions and let R12 be a dilated version of the common boundary shared between them which we henceforth refer to as the watershed region (see 2D illustration on right).Image: R1 R1 R2We quantify the saliency information in the watershed region)Let R1 and R2 be the given pair of adjacent regions and let R12 be a dilated version of the common boundary shared between them which we henceforth refer to as the watershed region (see 2D illustration on right).We quantify the saliency or edgeness of the watershed region)We quantify the saliency or edgeness of the watershed region using two types of measures:•Ratio of the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R1 and M_R2.•Ratio of inter-quartile range (IQR_R1 and IQR_R2) of the given pair of adjacent regions. Specifically, we use as features the ratio of IQR_R1 and IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2.Boundary ContinuityAmount of commonWe first compute an estimate of areas of the bounding surfaces (A1 and
Boundary Saliency FeaturesWatershed saliency (quantifies the amount of edge information in the watershed region)Let R1 and R2 be the given pair of adjacent regions and let R12 be a dilated version of the common boundary shared between them which we henceforth refer to as the watershed region (see 2D illustration on right).Image: Common boundary shared between them which we henceforth refer to as the watershed region (see 2D illustration on right).We quantify the saliency or edgeness of the watershed region)We quantify the saliency or edgeness of the watershed region using two types of measures:Image: Common boundary shared between them which we henceforth refer to as the watershed region (see 2D illustration on right).We quantify the saliency or edgeness of the watershed region using two types of measures:Image: Common boundary shared between them which we henceforth refer to as the watershed region (see 2D illustration on right).We quantify the saliency or edgeness of the watershed region using two types of measures:Image: Common boundary shared between them which we henceforth refer to as the watershed region with the median intensity (M_R12) of the watershed region with the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) maximum of M_R1 and M_R2.Boundary ContinuityAmount of commonWe first compute an estimate of areas of the bounding surfaces (A1 and
Boundary Saliency FeaturesWatershed saliency (quantifies the amount of edge information in the watershed region)Let R1 and R2 be the given pair of adjacent regions and let R12 be a dilated version of the common boundary shared between them which we henceforth refer to as the watershed region (see 2D illustration on right). We quantify the saliency or edgeness of the watershed region using two types of measures: • Ratio of the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) maximum of M_R1 and M_R2.Boundary ContinuityAmount of commonWe first compute an estimate of areas of the bounding surfaces (A1 and
Boundary Saliency FeaturesWatershed saliency (quantifies the amount of edge information in the watershed region)Let R1 and R2 be the given pair of adjacent regions and let R12 be a dilated version of the common boundary shared between them which we henceforth refer to as the watershed region (see 2D illustration on right). We quantify the saliency or edgeness of the watershed region using two types of measures: • Ratio of the median intensity (M_R12) of the watershed region with the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) maximum of M_R1 and M_R2) of the given pair of adjacent region. Specifically, we use as features the ratio of IQR_R12 with (i) minimum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2.Boundary ContinuityAmount of commonWe first compute an estimate of areas of the bounding surfaces (A1 and
Boundary Saliency FeaturesWatershed saliency (quantifies the amount of edge information in the watershed region)Let R1 and R2 be the given pair of adjacent regions and let R12 be a dilated version of the common boundary shared between them which we henceforth refer to as the watershed region (see 2D illustration on right). We quantify the saliency or edgeness of the watershed region)Image: R1 and R2 be the given pair of adjacent regions and let R12 be a dilated version of the common boundary shared between them which we henceforth refer to as the watershed region (see 2D illustration on right). We quantify the saliency or edgeness of the watershed region using two types of measures: • Ratio of the median intensity (M_R12) of the watershed region with the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) maximum of M_R1 and M_R2.Boundary ContinuityAmount of commonWe first compute an estimate of areas of the bounding surfaces (A1 and
Boundary Saliency FeaturesWatershed saliency (quantifies the amount of edge information in the watershed region)Let R1 and R2 be the given pair of adjacent regions and let R12 be a dilated version of the common boundary shared between them which we henceforth refer to as the watershed region (see 2D illustration on right). We quantify the saliency or edgeness of the watershed region using two types of measures: • Ratio of the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) maximum of M_R1 and M_R2.Boundary ContinuityAmount of commonWe first compute an estimate of areas of the bounding surfaces (A1 and
 Features (quantifies the amount of edge information in the watershed region) We quantify the saliency or edgeness of the watershed region (see 2D illustration on right). We quantify the saliency or edgeness of the watershed region using two types of measures: Ratio of the median intensity (M_R12) of the watershed region with the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) maximum of M_R1 and M_R2. Ratio of inter-quartile range (IQR_R12) of the watershed region with the inter-quartile range (IQR_R1 and IQR_R2) of the given pair of adjacent regions. Specifically, we use as features the ratio of IQR_R12 with (i) minimum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2. Boundary Continuity Amount of common We first compute an estimate of areas of the bounding surfaces (A1 and M_R2)
 (quantifies the amount of edge information in the watershed region) (quantifies the amount of edge information in the watershed region) (quantify the saliency or edgeness of the watershed region using two types of measures: Ratio of the median intensity (M_R12) of the watershed region with the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) maximum of M_R1 and M_R2. Ratio of inter-quartile range (IQR_R12) of the watershed region with the inter-quartile range (IQR_R1 and IQR_R2) of the given pair of adjacent regions. Specifically, we use as features the ratio of IQR_R12 with (i) minimum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2. Boundary Continuity Amount of common
amount of edge information in the watershed region)henceforth refer to as the watershed region (see 2D illustration on right). We quantify the saliency or edgeness of the watershed region using two types of measures:Ratio of the median intensity (M_R12) of the watershed region with the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) maximum of M_R1 and M_R2.Ratio of inter-quartile range (IQR_R12) of the watershed region with the inter-quartile ranges (IQR_R1 and IQR_R2) of the given pair of adjacent regions. Specifically, we use as features the ratio of IQR_R12 with (i) minimum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2, and (ii)
Information in the watershed region)2D illustration on right). We quantify the saliency or edgeness of the watershed region using two types of measures: • Ratio of the median intensity (M_R12) of the watershed region with the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) maximum of M_R1 and M_R2.• Ratio of inter-quartile range (IQR_R12) of the watershed region with the inter-quartile ranges (IQR_R1 and IQR_R2) of the given pair of adjacent regions. Specifically, we use as features the ratio of IQR_R12 with (i) minimum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2.
watershed region)We quantify the saliency or edgeness of the watershed region using two types of measures:• Ratio of the median intensity (M_R12) of the watershed region with the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) maximum of M_R1 and M_R2.• Ratio of inter-quartile range (IQR_R12) of the watershed region with the inter-quartile ranges (IQR_R12 of the watershed region with the inter-quartile ranges (IQR_R1 and IQR_R2) of the given pair of adjacent regions. Specifically, we use as features the ratio of IQR_R12 with (i) minimum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2.Boundary ContinuityAmount of commonWe first compute an estimate of areas of the bounding surfaces (A1 and
 watershed region using two types of measures: Ratio of the median intensity (M_R12) of the watershed region with the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) maximum of M_R1 and M_R2. Ratio of inter-quartile range (IQR_R12) of the watershed region with the inter-quartile ranges (IQR_R1 and IQR_R2) of the given pair of adjacent regions. Specifically, we use as features the ratio of IQR_R12 with (i) minimum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2, and (ii) We first compute an estimate of areas of the bounding surfaces (A1 and M_R2).
 Ratio of the median intensity (M_R12) of the watershed region with the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) maximum of M_R1 and M_R2. Ratio of inter-quartile range (IQR_R12) of the watershed region with the inter-quartile ranges (IQR_R1 and IQR_R2) of the given pair of adjacent regions. Specifically, we use as features the ratio of IQR_R12 with (i) minimum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2.
 with the median intensities (M_R1 and M_R2) of each of the given pair of adjacent regions. Specifically, we use as features the ratio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) maximum of M_R1 and M_R2. Ratio of inter-quartile range (IQR_R12) of the watershed region with the inter-quartile ranges (IQR_R1 and IQR_R2) of the given pair of adjacent regions. Specifically, we use as features the ratio of IQR_R12 with (i) minimum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2, and (ii) Boundary Continuity Amount of common We first compute an estimate of areas of the bounding surfaces (A1 and IQR_R1)
given pair of adjacent regions. Specifically, we use as features the ratio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) maximum of M_R1 and M_R2.• Ratio of inter-quartile range (IQR_R12) of the watershed region with the inter-quartile ranges (IQR_R1 and IQR_R2) of the given pair of adjacent regions. Specifically, we use as features the ratio of IQR_R12 with (i) minimum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2, and (ii)Boundary ContinuityAmount of commonWe first compute an estimate of areas of the bounding surfaces (A1 and
ratio of M_R12 with (i) minimum of M_R1 and M_R2, and (ii) maximum of M_R1 and M_R2.• Ratio of inter-quartile range (IQR_R12) of the watershed region with the inter-quartile ranges (IQR_R1 and IQR_R2) of the given pair of adjacent regions. Specifically, we use as features the ratio of IQR_R12 with (i) minimum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2, and (ii)Boundary ContinuityAmount of commonWe first compute an estimate of areas of the bounding surfaces (A1 and
maximum of M_R1 and M_R2.• Ratio of inter-quartile range (IQR_R12) of the watershed region with the inter-quartile ranges (IQR_R1 and IQR_R2) of the given pair of adjacent regions. Specifically, we use as features the ratio of IQR_R12 with (i) minimum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2.Boundary ContinuityAmount of commonWe first compute an estimate of areas of the bounding surfaces (A1 and
 Ratio of inter-quartile range (IQR_R12) of the watershed region with the inter-quartile ranges (IQR_R1 and IQR_R2) of the given pair of adjacent regions. Specifically, we use as features the ratio of IQR_R12 with (i) minimum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2. Boundary Continuity Amount of common We first compute an estimate of areas of the bounding surfaces (A1 and IQR_R1)
with the inter-quartile ranges (IQR_R1 and IQR_R2) of the given pair of adjacent regions. Specifically, we use as features the ratio of IQR_R12 with (i) minimum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2. Boundary Continuity Amount of common
pair of adjacent regions. Specifically, we use as features the ratio of IQR_R12 with (i) minimum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2. Boundary Continuity Amount of common We first compute an estimate of areas of the bounding surfaces (A1 and IQR_R1 and IQR_R2)
of IQR_R12 with (i) minimum of IQR_R1 and IQR_R2, and (ii) maximum of IQR_R1 and IQR_R2. Boundary Continuity Amount of common We first compute an estimate of areas of the bounding surfaces (A1 and
Boundary Continuity Amount of common We first compute an estimate of areas of the bounding surfaces (A1 and
Boundary Continuity Amount of common We first compute an estimate of areas of the bounding surfaces (A1 and
FeaturesboundaryA2) of the two given regions and the area of the common boundary (A12)
shared by both of them. We then use as features the ratio of A12 with (i)
These features quantify minimum of A1 and A2, and (ii) maximum of A1 and A2.
the likelihood of
merging the two given Shown below is a 2D schematic illustrating how this feature could help in
regions from a determining whether or not the merge a given pair of adjacent regions
geometric point of view
OK To Merge NOT OK To Merge
Comparity Massures We often abased that the second structure is the line of the second structure is th
Convexity ineasures we often observed that when a given pair of adjacent regions belong to
region. To conture this insight, we use as features (i) convexity of the
more adverse and (ii) the ratio of the convenity of the more adverse
with the convexity values of the individual regions

Gap between the bounding surfaces of the two regions	Here, we intend to measure the gap created by the watershed algorithm between the given pair of adjacent regions (see green region in 2D illustration on right). Because of the anisotropic voxel spacing in our data, this gap varies depending on the way two adjacent regions touch each other geometrically in 3D.
	To quantify the gap, we first consider one of the two given regions as the reference region and determine the part of its boundary that touches/interacts with the other region, which we denote here as B. For each voxel in B, we compute the distance, in physical space (microns), to the closest voxel on the boundary of the other region. We then compute the minimum, maximum, mean, and standard deviation of these distance values as features.
Junction/Neck Curvature	We compute a coarse estimate of the curvature at each voxel on the neck (see blue pixels in 2D illustration on right). Specifically, for each voxel p on the neck, we compute the fraction of foreground (cell nuclei) voxels inside a sphere of a specified size centered at the neck voxel, which we denote as Vin(p).
	When the continuity between the bounding surfaces of the two given regions at a neck voxel is smooth (see 2D schematic in Fig. (a) below) approximately 50% of the voxels inside the sphere will belong to the foreground and when the continuity between the two bounding surfaces at a neck voxel is non-smooth (see 2D schematics in Figs. (b) and (c) below). Based on this insight, we compute the curvature at a neck voxel p as C(p) = $ Vin(p) - 0.5 $ where . denotes the absolute value. Observe that C(p) will be close to zero whenever the continuity is smooth and increases as the continuity is non-smooth.
	Vin = 50% Vin < 50% Vin > 50%
	Curvature Curvature Curvature
	(a) (b) (c)
	We compute the aforementioned curvature measure for all junction voxels and then compute the min, max, mean, and standard deviation of these values as features.

Supplementary Table 2: Performance statistics of the nuclei segmentation algorithm

	Mean +/- stddev (%)	Range (%)
Segmentation Accuracy	91.04 +/- 4.87	[77.61, 97.89]
Over-segmentation Errors	3.82 +/- 2.65	[0.70 14.00]
Under-segmentation Errors	4.91 +/- 3.42	[0.00 12.68]

Supplementary Table 3: Comparison of segmentation accuracy obtained using our nuclei segmentation algorithm with and without region merging on a small 5-volume test dataset

	Mean +/- stddev (%)	Range (%)
Proposed method with region merging	94.76 +/- 2.14	[92.59, 97.88]
Proposed method without region merging	87.70 +/- 2.11	[84.23, 89.87]

Supplementary Table 4: Features used for cell cycle state identification

Histone Features	Intensity statistics	Entropy of 8-bin histogram
		Median intensity
	(computed from the voxels inside cell	Median absolute deviation (MAD)
	mask in the histone channel)	Inter-quartile range (IQR)
		Robust measure of skewness*
		Robust measure of kurtosis*
		Median of Local standard deviation in a 3x3 neighborhood
	Haralick texture features at 4 scales	Contrast
		Homogeneity
	(Intensities of the cell voxels were	Energy
	normalized using the minimum and	Entropy
	maximum intensities of the cell; Gray-	Correlation
	level Co-occurence Matrix was computed	AutoCorrelation
	in a rotation invariant fashion using 64	ClusterShade
	grav-levels and neighborhood offsets of 1.	ClusterProminence
	2 4 and 8 voxels wherein the offset in Z-	MaximumProbability
	dimension was adjusted based on the	
	anisotropy in the voxel spacing)	
	Shape features	Convexity of MIP
	Shupe fourthes	Eccentricity of MIP
	(computed both from the cell mask in 3D	Circularity of MIP
	and its maximum intensity projection	3D converte
	(MIP) along the z-axis)	5D convexity
FUCCI Footuros	Intensity statistics	Entropy of 8 hin histogram
r UCCI reatures	Intensity statistics	Modian intensity
	(computed congrately from the years)	Median absolute deviation
	inside the coll mask in EUCCL CEP and	Inter quartile range
	ELICCI DED abannala)	Debugt measure of skewness
	rocci-kirr channels)	Robust measure of skewness
		Modian of Local standard deviation in a 2x2 naighborhood
		Patie a fina liter interaction in ELICOL CED and History
	Cross-channel ratios of a selected set of	Ratio of median intensity in FUCCI-GFP and Histone
	intensity statistics	Ratio of MAD in FUCCI-GFP and Histone
		Ratio of IQR in FUCCI-GFP and Historie
		Datio of madian intensity in EUCCI DED and History
		Datio of MAD in EUCCL DED and History
		Ratio of MAD in FUCCI-RFF and Historie
		Ratio of median intensity in FUCCI-RFP and FUCCI-GFP
		Ratio of MAD in FUCCI-RFP and FUCCI-GFP
		Ratio of IOR in FUCCI-RFP and FUCCI-GFP
	Cross-channel colocalization measures	Pearson correlation between FUCCL-GFP and Histone
	using the pearson correlation coefficient	Pearson correlation between FUCCI-RFP and Histone
	using the peurson conclution coefficient	Pearson correlation between FUCCLGEP and FUCCLPEP
		realson contention between FUCCI-GFP and FUCCI-KFP

*Kim, T.-H. & White, H. On more robust estimation of skewness and kurtosis. Finance Research Letters 1, 56-73 (2004).

Supplementary Table 5: Confusion matrix for the 4-class cell cycle state identification model

Human\Computer	G1	Late G1/Early S	S/G2	mitotic
G1	2801	173	30	8
Late G1/Early S	40	550	8	3
G2	12	100	630	45
Μ	1	5	19	382

Supplementary Table 6: Per-class performance of the 4-class cell cycle state identification model

	Precision	Recall	F-Measure
G1	0.98	0.93	0.95
Late G1/Early S	0.66	0.92	0.77
G2	0.92	0.80	0.85
Μ	0.87	0.94	0.90

Supplementary Table 7: Overall performance of the 4-class cell cycle state identification model

	Accuracy	Average Precision	Average Recall	Average F-Measure
10-fold CV on Training dataset	91.72%	0.88	0.91	0.89
Test dataset	90.76%	0.86	0.90	0.87

Supplementary Table 8: Confusion matrix for the Interphase vs mitotic classification model

Human\Computer	Interphase	Mitotic
Interphase	4287	113
Mitotic	11	396

Supplementary Table 9: Per-class performance of the Interphase vs Mitotic classification model

	Precision	Recall	F-Measure
Interphase	0.99	0.97	0.99
Mitotic	0.78	0.97	0.86

Supplementary Table 10: Overall performance of the Interphase vs Mitotic classification model

	Accuracy	Average Precision	Average Recall	Average F-Measure
10-fold CV on Training dataset	96.22%	0.89	0.97	0.92
Test dataset	97.42%	0.89	0.97	0.93

Supplementary Table 11: Confusion matrix for the G1 vs S/G2/M classification model

Human\Computer	G1	S/G2/M
G1	2901	111
S/G2/M	99	1696

Supplementary Table 12: Per-class performance of the G1 vs S/G2/M classification model

	Precision	Recall	F-Measure
G1	0.97	0.96	0.97
S/G2/M	0.94	0.94	0.94

Supplementary Table 13: Overall performance of the G1 vs S/G2/M classification model

	Accuracy	Average Precision	Average Recall	Average F-Measure
10-fold CV on Training dataset	97.04%	0.97	0.97	0.97
Test dataset	95.63%	0.95	0.95	0.95