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SUPPLEMENTARY FIG. 1. Charge 〈n̂i〉 and magnetic order 〈M̂α
i 〉 of the fractional phases at ν = 1
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kSO = π/6 as obtained from DMRG simulations of a system of length L = 96 with Ω(1)/t = 1. For the interaction parameters
see the panels. Since the system is a crystal with small boundary effects, we only plot the central part of the system for a better
readability.
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(d) obtained through DMRG simulations (see the caption of Supplementary Fig. 1 for the parameters).
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U/t→∞ for kSO = π/3. Thin red line is a fit with the Calabrese-Cardy formula which yields c = 1.0± 0.1.
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SUPPLEMENTARY FIG. 5. Entanglement entropy S(`) of the ground state of a SU(2) fermionic gas for kSO = π/2 (a) and
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Supplementary Note 1: Additional results for the case I = 1

Numerical results for kSO = π/6 and Ĥ2 6= 0. In addition to the data for the fully-gapped phases for kSO = π/3
discussed in the main text, in Supplementary Fig. 1 we present the density 〈n̂j〉 and magnetization profiles 〈M̂α

j 〉 of

the gapped phases for kSO = π/6 and fillings ν = 1
2 ,

1
3 ,

2
3 . In Supplementary Fig. 2(a) we also show the landscape of

the on-site eigenenergies εj,λ = 2Ω(I) cos
[

2πλ
2I+1 + 2kSOj

]
(note that they explicitly depend on kSO, and in the present

case they display a six lattice site periodicity), in panels (b-d) we show the density profiles in the rotated spin basis,
〈n̂j,λ〉.

Remarkably, they resemble a diluted version of the density profiles presented in the main text, suggesting that, at a
fixed ν, almost the same physics is obtained by scaling kSO and the number of fermions by the same factor. However,
different (e.g. longer range) interactions may be necessary to stabilize phases with the same ν.

Numerical results for kSO = π/3 and Ĥ2 = 0. We show that the oscillations of the chiral currents vanish in
the thermodynamic limit, and can therefore be interpreted as a boundary/finite-size effect (see Supplementary Fig. 3).
Conversely, the bulk value of such currents is independent from the system size.

Gapless phases with Ĥ2 6= 0. Finally, we show that the range of the interactions is an essential ingredient
to stabilise fully-gapped phases when Ĥ2 6= 0. Supplementary Fig. 4 demonstrates that a simple contact interaction
cannot stabilise a gapped phase at ν = 1/4 with kSO = π/3: indeed, the ground-state von Neumann entanglement
entropy displays a dependence on the subsystem size ` which is typical of a gapless phase.

Supplementary Note 2: Additional results for the case I = 1/2

Numerical results for kSO 6= π/2. Let us numerically show that kSO = π/2 is a necessary condition to obtain
crystalline phases for I = 1/2. We consider as an example ν = 1/2 and the interaction Ĥ = U

∑
j n̂j,m=1/2n̂j,m=−1/2

in the limit U/t → ∞, that stabilises a gapped phase for kSO = π/2. Consistently, the entanglement entropy of
the ground state displays a clear area-law behaviour, see Supplementary Fig. 5(a). If kSO is rather tuned to π/3,
under the same conditions the entanglement entropy shows a non-area-law behaviour, which can be fitted with the
Calabrese-Cardy formula, signaling the existence of a critical (gapless) ground state, see Supplementary Fig. 5(b).

Gapping mechanism. We now discuss the nature of the gapping mechanism responsible for the magnetic
crystals studied in the text. The combined action of the Raman coupling Ĥ1 with Ĥint gives rise to two commuting
Sine-Gordon terms: ∫

dx cos[
√

2(qφ̂c + θ̂s)] +

∫
dx cos[

√
2(qφ̂c − θ̂s)]. (1)

Additionally, it is known that when ν = 1, 12 ,
1
3 , ... the bare interaction Ĥint leads to the additional Mott terms

ĤMott,ν ∝ cos
(√

8ν−1φ̂c

)
, (2)

which constitute a gapping mechanism for the charge degrees of freedom when Kc < ν2. We now discuss the interplay
of the terms (1) and (2) for different fillings ν.
ν = 1. When U = 0 and Ω 6= 0 the ground state is fully gapped (band insulator) due to the presence of the

terms (1) with q = 1 (which are relevant for Kc < 3). If U > 0, the additional Mott term (2) with ν = 1 (which
is relevant for Kc < 1) has to be taken into account. As the arguments of these three terms commute, (2) cannot
modify the nature of the gapped phase or induce a phase transition (note also that the terms (1) are more relevant).
Furthermore, for U > 0 we have numerically checked that the gap induced by the terms (1) is enhanced with respect to

the non-interacting regime [1], as we can see by studying the correlation length ξ associated to |〈ĉ†i,mĉj,m〉| ∼ e−|i−j|/ξ
(see Supplementary Fig. 6) for different values of U . The gapped phase is stabilised by U since the correlation length
ξ decreases (and thus the gap is enhanced) when U is increased. The additional fact that for Ω = 0 and U � 0 the
ground state is gapless (only charge degrees of freedom are gapped out) asserts that we are not observing a standard
Mott insulator [2, 3].
ν = 1/3. When U = 0 and Ω 6= 0 the ground state is gapless. An incompressible phase is stabilised if Ω 6= 0

and V > 0 regardless the value of U . In this case we have: the terms (1) with q = 3 (relevant if Kc < 1/3) and
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the Mott term (2) with ν = 1/3 (relevant if Kc < 1/9). Taking into account that Kc > 1/8, since we only have a
nearest-neighbour interaction [4], we obtain that the Mott term is not relevant and it cannot constitute a gapping
mechanism. We thus conclude that the incompressible phase we observe is due to the interplay of interactions and
magnetic field only. This is further supported by the observation that if we set Ω = 0 we can check numerically that
the ground state is gapless and the entanglement entropy scales logarithmically with a central charge c = 2 (implying
four gapless modes) for all the possible values of U and V .
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