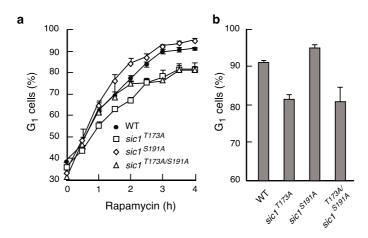
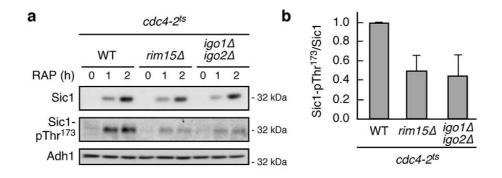
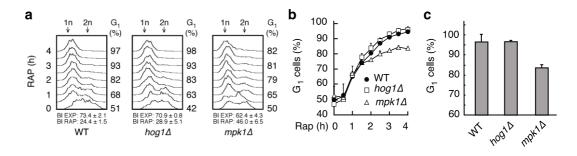
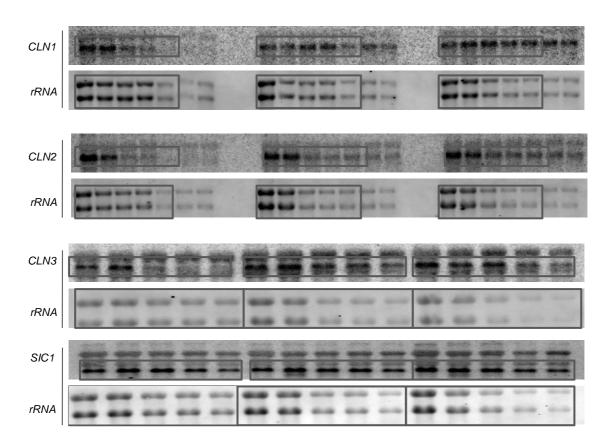

Supplementary Figures


Supplementary Figure 1 | Rim15 ensures Sic1 accumulation following TORC1 inactivation independently of the yeast strain background. The levels of endogenous Sic1, in exponentially growing (0 h) and rapamycintreated (RAP; 1-4 h) BY4741, W303-1A, and SP1 wild-type (WT) and respective isogenic $rim15\Delta$ mutant cells, were determined by immunoblot analyses using polyclonal anti-Sic1 antibodies. Adh1 levels served as loading controls.

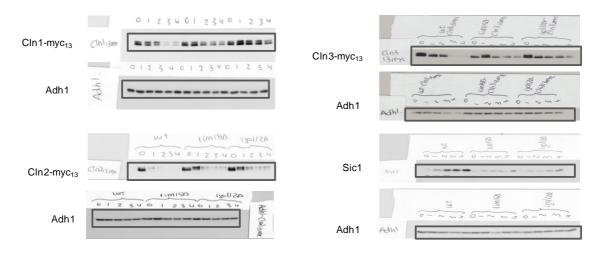

Supplementary Figure 2 | **Mutation of Thr**¹⁷³ **to Ala in Sic1, like loss of Rim15, compromises normal Sic1 accumulation in rapamycin-treated cells.** Sic1 levels and phosphorylation of Thr¹⁷³ in Sic1 (Sic1-pThr¹⁷³) were determined in exponentially growing (0 h) and rapamycin-treated (RAP; 2 and 4 h) cells with the indicated genotypes by immunoblot analyses using polyclonal anti-Sic1 and phosphospecific anti-Sic1-pThr¹⁷³ antibodies, respectively. Adh1 levels served as loading controls.


Supplementary Figure 3 | Phos-tag phosphate affinity gel electrophoresis analysis of genomically myc_{13} -tagged Sic1 or Sic1^{T173A}. Sic1-myc_{13} or Sic1^{T173A}-myc_{13} were analyzed by phos-tag phosphate affinity and SDS gel electrophoresis (followed by immunoblot analysis using anti-myc or anti-Sic1-pThr¹⁷³ antibodies) in extracts from exponentially growing (0 h) and rapamycin-treated (RAP; 2 h) WT and $cdc55\Delta$ strains. The 6 differentially phosphorylated Sic1-myc₁₃ isoforms are numbered sequentially from 1 to 6 (right side of the panels). Adh1 levels served as loading controls.

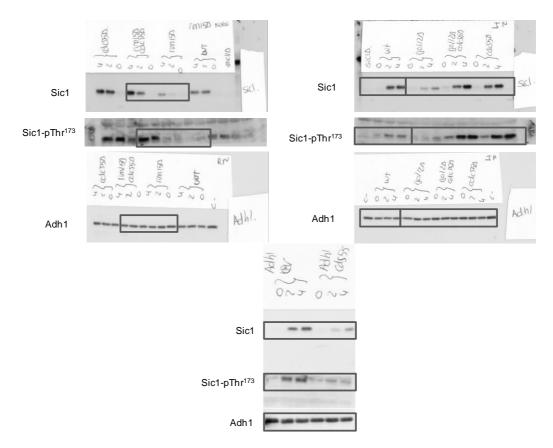
Supplementary Figure 4 | **The Sic1**^{T173A} **allele compromises G**₁ **arrest in rapamycin-treated cells.** (a) FACS analyses were performed in exponentially growing (0 h) and rapamycin-treated (times indicated) WT, *sic1*^{T173A}, *sic1*^{S191A}, and *sic1*^{T173A/S191A} cells. The experiments were performed independently 3 times for each strain (one representative FACS profile is shown in Fig. 2g) and the quantifications (means \pm SD) of the percentage of G₁ cells in the respective populations are presented. (b) Bar graphs show the percentage of G₁ cells in the populations of rapamycin-treated (4 h) strains with the indicated genotypes with error bars indicating the 95% confidence interval. The data points from the 4-h rapamycin treatment were further used to perform an ANOVA analysis, which was followed by a Tukey's post-hoc test to examine the differences for each pair of strains. We found a highly significant difference among the four strains (ANOVA, p-value <0.001). Tukey's post-hoc test indicated that the values for WT and *sic1*^{S191A} cells were not significantly different from each other (p-value=0.133); similarly the values for *sic1*^{T173A} and *sic1*^{T173A/S191A} cells were also not significant (all p-values <0.001), showing that the values for WT and *sic1*^{S191A} cells significantly diverged from the ones of the *sic1*^{T173A} and *sic1*^{T173A/S191A} cells.

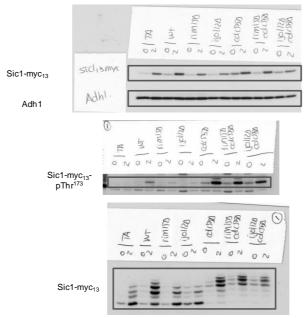


Supplementary Figure 5 | Inactivation of the SCF^{Cdc4} ubiquitin ligase suppresses the defect in Sic1 accumulation, but not in Sic1-Thr¹⁷³ phosphorylation, in rapamycin-treated *rim15* Δ *cdc4-2^{ts}* and *igo1* Δ *igo2* Δ *cdc4-2^{ts}* mutant cells. (a) Sic1 levels and phosphorylation of Thr¹⁷³ in Sic1 (Sic1-pThr¹⁷³) were determined by immunoblot analyses using polyclonal anti-Sic1 and phosphospecific anti-Sic1-pThr¹⁷³ antibodies, respectively. Cells (genotypes indicated) were pre-grown exponentially at 24°C (0 h) and then shifted to 37°C for 1 or 2 h (to inactivate Cdc4-2^{ts}) in the presence of rapamycin (RAP). Adh1 levels served as loading controls. The experiment was performed independently 3 times and one representative set of blots is shown. (b) Bars represent the ratio between the mean Sic1-pThr¹⁷³ levels and Sic1 protein levels (± SD; 3 independent experiments), determined in rapamycin-treated (2h at 37°C) *cdc4-2^{ts}*, *rim15* Δ *cdc4-2^{ts}*, and *igo1* Δ *igo2* Δ *cdc4-2^{ts}* cells and expressed relative to the value in *cdc4-2^{ts}* cells (set to 1.0).



Supplementary Figure 6 | Loss of Mpk1, but not of Hog1, compromises timely G₁ arrest in rapamycintreated cells. (a) FACS analyses were performed in exponentially growing (time 0 h) and rapamycin-treated (times indicated) WT, $hog1\Delta$, and $mpk1\Delta$ cells. FACS and BI analyses were performed as in Fig. 1a. The experiments were performed independently 3 times for each strain (one representative FACS profile is shown). (b) Quantifications (means ± SD) of the percentage of G₁ cells in the respective populations in (a) are presented. (c) Bar graphs showing the percentage of G₁ cells in the populations of rapamycin-treated (4 h) strains with the indicated genotypes with error bars indicating the 95% confidence interval. The data points from the 4-h rapamycin treatment were further used to perform an ANOVA analysis, which was followed by a Tukey's posthoc test to examine the differences for each pair of strains. We found a highly significant difference among the three strains (ANOVA, p-value <0.001). Tukey's post-hoc test indicated that the values for WT and $hog1\Delta$ cells were not significantly different from each other (p-value=0.53), but that the values for the $mpk1\Delta$ cells were significantly different from the other two strains (both p-values <0.002).


Supplementary Figures 7-25: Original Blots

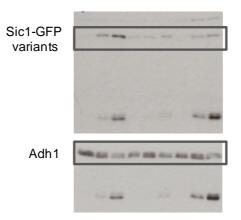

Supplementary Figure 7 | Full-sized scans of Northern blots in Figure 1e.

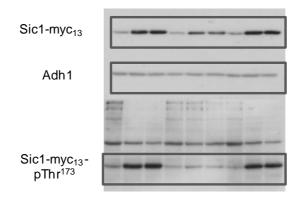
Supplementary Figure 8 | Full-sized scans of Western blots in Figure 1f.

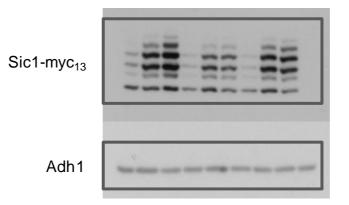
Supplementary Figure 9 | Full-sized scans of Western blots in Figure 2a.

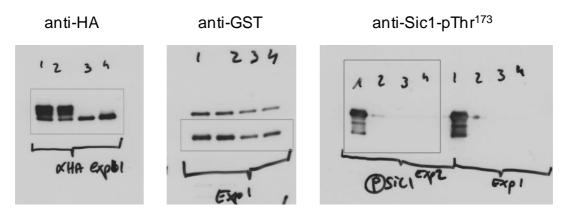
Supplementary Figure 10 | Full-sized scans of Western blots in Figure 2c.

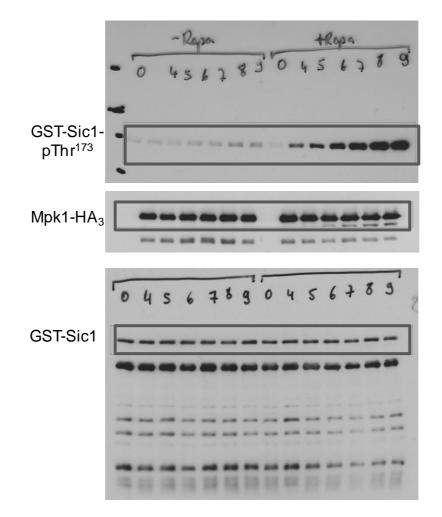
Supplementary Figure 11 |Full-sized scans of Western blots in Figure 2d.

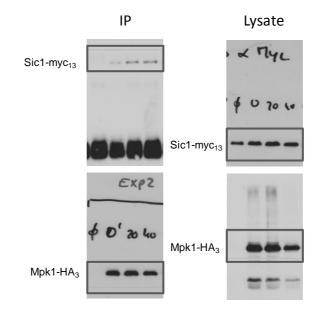

Supplementary Figure 12 | Full-sized scans of Western blots in Figure 2e.

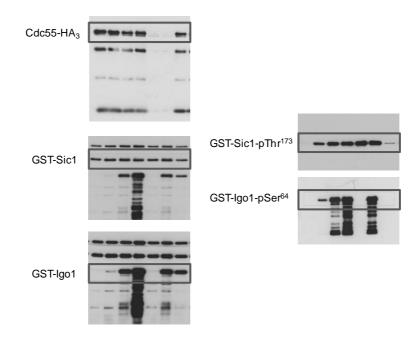

Supplementary Figure 13 | Full-sized scans of Western blots in Figure 2f.

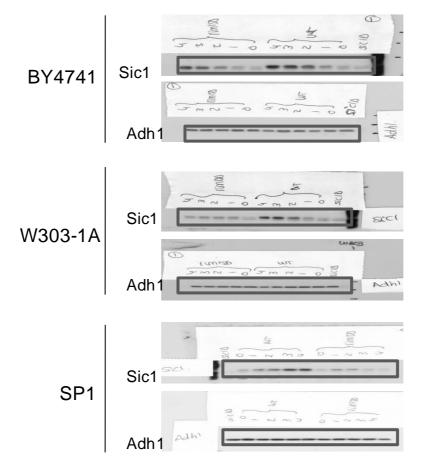

Supplementary Figure 14 | Full-sized scans of Western blots in Figure 3a.

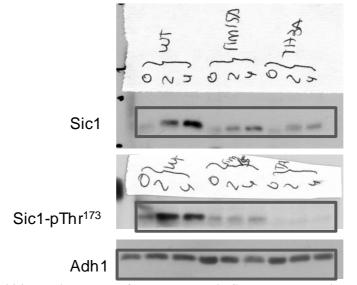

Supplementary Figure 15 | Full-sized scans of Western blots in Figure 3c.

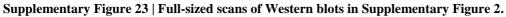

Supplementary Figure 16 | Full-sized scans of Western blots in Figure 4a.

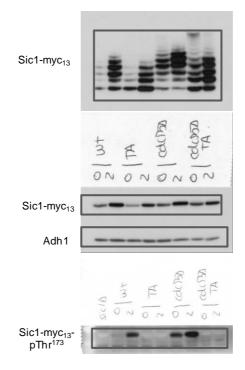

Supplementary Figure 17 | Full-sized scans of Western blots in Figure 4b.


Supplementary Figure 18 | Full-sized scans of Western blots in Figure 4c.


Supplementary Figure 19 | Full-sized scans of Western blots in Figure 4d.


Supplementary Figure 20 | Full-sized scans of Western blots in Figure 4e.




Supplementary Figure 21 | Full-sized scans of Western blots in Figure 5a.

Supplementary Figure 22 | Full-sized scans of Western blots in Supplementary Figure 1.

Supplementary Figure 24 | Full-sized scans of Western blots in Supplementary Figure 3.

Supplementary Figure 25 | Full-sized scans of Western blots in Supplementary Figure 5.

Supplementary Tables

Supplementary Table 1 Str	ains Used in This Study.
-----------------------------	--------------------------

Strain	Genotype	Source	Figure
BY4741	MAT a ; his3 Δ 1, leu2 Δ 0, met15 Δ 0, ura3 Δ 0	reference1	1a, S1
W303-1A	MATa; ade2-1, trp1-1, can1-100, leu2-3,112, his3-11,15, ura3-1		1a, S1
SP1	MAT a ; leu2, his3, trp1, ade8, ura3, can1	reference ²	1a, S1
JK9-3D	MAT a ; leu2, his4, trp1, ura3, rme1, GAL,HMLa	reference ³	1b,1d-f,1i, 2a-b, 2f-g S2, S4, S6
YMM203	[SP1] $rim15\Delta$:: $kanMX$	this study	S1
YSB147	[BY4741] <i>rim15∆::natMX</i> , <i>MET15</i>	reference ⁵	S1
CDV95-4A	$[W303-1A]$ rim15 Δ ::kanMX	this study	S1
IP11	$[JK9-3D]$ <i>rim15</i> Δ :: <i>kanMX</i>	reference ⁴	1c-f, 1i, 2a, S2
YMM57-2A	[JK9-3D] $igo1\Delta$::natMX, $igo2\Delta$::Hph-NT1	this study	1c-f, 1i, 2a
YMM59	[JK9-3D] CLN1-myc ₁₃ ::kanMX	this study	lf-g
YMM60	[JK9-3D] <i>CLN2-myc</i> ₁₃ ::kanMX	this study	lf-g
YMM61	[JK9-3D] CLN3-myc ₁₃ ::kanMX	this study	1f, 1h
YMM87-2D	[JK9-3D] rim15 Δ ::kanMX, CLN1-myc ₁₃ ::kanMX	this study	lf-g
YMM88-12B	[JK9-3D] $rim15\Delta$:: $kanMX$, $CLN2$ - myc_{13} :: $kanMX$	this study	lf-g
YMM78-2A	[JK9-3D] $rim15\Delta$:: $kanMX$, $CLN3$ - myc_{13} :: $kanMX$	this study	1f, 1h
YMM85-5D	[JK9-3D] $igo1\Delta$::natMX, $igo2\Delta$::Hph-NT1, CLN1-myc ₁₃ ::kanMX	this study	lf-g
YMM79-9A	[JK9-3D] $igo1\Delta$::natMX, $igo2\Delta$::Hph-NT1, CLN2-myc ₁₃ ::kanMX	this study	lf-g
YMM80-5C	[JK9-3D] $igo1\Delta$::natMX, $igo2\Delta$::Hph-NT1, CLN3-myc ₁₃ ::kanMX	this study	1f, 1h
YMM55-1C	$[JK9-3D]$ rim15 Δ ::kanMX, cdc55 Δ ::natMX	this study	2a
YMM90-3D	[JK9-3D] $igo1\Delta$::natMX, $igo2\Delta$::Hph-NT1, $cdc55\Delta$::natMX	this study	2a
YMM46	$[JK9-3D] cdc55\Delta::natMX$	this study	2a, 5a
YMM98	[JK9-3D] $sic1^{T173A}$ - myc_{13} ::kanMX, EMP46::natMX	this study	2c-e, S3
YMM143-2A	[JK9-3D] $sic1^{T173A}$ -myc ₁₃ ::kanMX,cdc55 Δ ::natMXEMP46::natMX	this study	S3
YMM63	[JK9-3D] SIC1-myc ₁₃ ::kanMX	this study	2c-e, S3
YMM68-9D	[JK9-3D] $rim15\Delta$::kanMX, SIC1-myc ₁₃ ::kanMX	this study	2c-d
YMM70-6B	[JK9-3D] igo1 <i>A</i> ::natMX, igo2 <i>A</i> ::Hph-NT1, SIC1-myc ₁₃ ::kanMX	this study	2c-d
YMM69-1C	[JK9-3D] <i>cdc55Δ</i> :: <i>natMX</i> , <i>SIC1-myc</i> ₁₃ :: <i>kanMX</i>	this study	2c-d, S3
YMM100-9D	[JK9-3D] $rim15\Delta$:: $kanMX$, $cdc55\Delta$:: $natMX$, $SIC1$ - myc_{13} :: $kanMX$	this study	2c-d
YMM96	[JK9-3D] $igo1\Delta::natMX$, $igo2\Delta::Hph-NT1$, $cdc55\Delta::natMX$, SIC1-myc ₁₃ ::kanMX	this study	2c-d
YMM91	[JK9-3D] sic1 ^{T173A} , EMP46::natMX	this study	2f-g, S2, S4
YMM101	[JK9-3D] sic1 ^{S191A} , EMP46::natMX	this study	2f-g, S4
YMM103	[JK9-3D] sic1 ^{T173A/S191A} , EMP46::natMX	this study	2f-g, S4
YMM105	[JK9-3D] sic1 ^{S191A} -myc13::kanMX, EMP46::natMX	this study	2e
YMM133	[JK9-3D] sic1 ^{T173A/S191A} -myc13::kanMX, EMP46::natMX	this study	2e
YMM114	[JK9-3D] <i>cdc4-2::kanMX</i>	this study	3a-b, S5
YMM117-3A	$[JK9-3D]$ rim15 Δ ::kanMX, cdc4-2::kanMX	this study	3a-b, S5
YMM116-4A	[JK9-3D] $igo1\Delta$::natMX, $igo2\Delta$::Hph-NT1, cdc4-2::kanMX	this study	3a-b, S5
YMM118-2D	[JK9-3D] sic1 ^{T173A} , EMP46::natMX, cdc4-2::kanMX	this study	3a-b
YMM77	[JK9-3D] <i>SIC1-GFP</i> (<i>S65T</i>):: <i>kanMX</i>	this study	3c-d
YMM97-7B	$[JK9-3D]$ rim 15Δ ::kanMX, SIC1-GFP(S65T)::kanMX	this study	3c
YMM99	[JK9-3D] siclT173A-GFP(S65T)::kanMX	this study	3c-d
YMM67-1C	[JK9-3D] sic1Δ::kanMX	this study	2a
YMM53	[JK9-3D] mpk1 <i>Δ</i> ::kanMX	this study	4c-f, S6
YMM65-2D	$[JK9-3D] mpk1\Delta::kanMX, SIC1-myc_{13}::kanMX$	this study	4a-b
YMM204-14C	[JK9-3D] hog1 <i>A</i> ::kanMX, SIC1-myc ₁₃ ::kanMX	this study	4a-b
YMM64-3C	$[JK9-3D]$ rim 15Δ ::kanMX, mpk 1Δ ::kanMX	this study	4f
YMM111-2A	$[JK9-3D]$ igo1 Δ ::natMX, igo2 Δ ::Hph-NT1, mpk1 Δ ::kanMX	this study	4f
YMM130	$[JK9-3D] hog 1\Delta::kanMX$	this study	S6

Plasmid	Genotype	Source	Figure
pRS416	CEN/ARS, URA3	reference ¹	1b
pMM5	[pRS416] <i>RME1</i>	this study	1b
p1308	[pRS414]	reference ¹	1d, 2d
p1309	[pRS415]	reference ¹	1d, 2d
p1310	[pRS416]	reference ¹	1d, 2d
pMM10	[pRS415] <i>HIS4</i>	this study	1d, 2d
pSB004	[pRS416] ADH1p-CDC55	reference ⁵	2a-b
p834	[pRS416] <i>ADH1</i> p	reference ⁶	2a-b
pMM6	[pRS416] <i>MPK1-HA</i> ₃	this study	4с-е
pMM7	$[pRS416]mpk1^{K54R}-HA_3$	this study	4c
pMM8	pGEX-SIC1	this study	4c-d, 5a
pMM9	pGEX-sic1 ^{T173A}	this study	4c
pMJA2610	[pRS416] <i>CDC55-HA</i> ₃	this study	5a
pCDV487	pHAC195-GAL1-GST-RIM15, 2 µ,URA3	reference ⁴	5a
pLC1092	pGEX-IGO1	reference ⁷	5a
pLC1134	pGEX-igo1 ^{S64A}	reference ⁷	5a

Supplementary Table 2 | Plasmids Used in This Study.

Supplementary References

- 1. Brachmann, C.B. *et al.* Designer deletion strains derived from *Saccharomyces cerevisiae* S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. *Yeast* **14**, 115-132 (1998).
- 2. Toda, T. et al. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40, 27-36 (1985).
- 3. Heitman, J., Movva, N.R. & Hall, M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. *Science* **253**, 905-909 (1991).
- 4. Pedruzzi, I. *et al.* TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G₀. *Mol. Cell* **12**, 1607-1613 (2003).
- 5. Bontron, S. *et al.* Yeast endosulfines control entry into quiescence and chronological life span by inhibiting protein phosphatase 2A. *Cell Rep* **3**, 16-22 (2013).
- 6. Mumberg, D., Müller, R. & Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. *Gene* **156**, 119-122 (1995).
- 7. Talarek, N. *et al.* Initiation of the TORC1-regulated G₀ program requires Igo1/2, which license specific mRNAs to evade degradation via the 5'-3' mRNA decay pathway. *Mol Cell* **38**, 345-355 (2010).