
SUPPORTING METHODS 

We used R (v3.0.0) (R Core Team, 2013) and QGIS (v2.0) (QGIS Team, 2014) to handle the 

geospatial data. In particular, we used the R packages ggplot2, gstat, raster, rgdal, and rgeos 

(Pebesma, 2004; Wickham, 2009; Bivand & Rundel, 2013; Bivand et al., 2013; Hijmans, 

2014) to generate random sampling points in the cropland of the world, to extract data from 

these sampling points, and to map the results. We used the GlobCover 2009 global land-cover 

map (ESA & UCL, 2010) to calculate the proportion non-crop habitat surrounding each 

cropland point. This map was too large to load into R and so we split it into smaller tiles (1º 

longitude x 1º latitude) for sampling and extracting data (Fig. S1). Within the cropland of 

each tile, we generated a number of random points in proportion to the area of cropland (i.e. 

we sampled with equal effort per unit area of cropland), and we then calculated the 

proportion of non-crop habitat within 1–4 km of each point, based on standard methods in 

landscape ecology (Shackelford et al., 2013). We specified a minimum distance of 8 km 

between points, so that 4 km radii did not overlap and points were independent samples of 

land cover from 1–4 km. We did not see clear distinctions between the global distribution of 

non-crop habitat within 1, 2, and 4 km of cropland, and therefore we used the data on non-

crop habitat within 2 km for all analyses. 

 We defined “cropland” as GlobCover classes 11 and 14 (irrigated and rainfed 

cropland) and a percentage of classes 20 and 30 (mosaic cropland and mosaic vegetation; see 

below), we defined “non-crop habitat” as classes 40–180 (grassland, shrubland, forest, etc.) 

and a proportion of classes 20 and 30 (mosaic cropland and mosaic vegetation; see below), 

and we did not include classes 190–230 (artificial, bare, permanent snow and ice, water, or no 

data classes) in calculations of land cover. The proportion of non-crop habitat surrounding a 

point was calculated by dividing the total area of non-crop habitat by the total area of land, 

not including classes 190–230 (e.g., not including water), so that the results were not biased 

against croplands surrounded by these classes (e.g., croplands on the coast). GlobCover 

classes 20 and 30 have variable percentages of crop and non-crop habitat. Class 20 (“mosaic 

cropland”) is 50–70% cropland and class 30 (“mosaic vegetation”) is 20–50% cropland. We 

defined “mosaic cropland” as 60% cropland (and thus 40% non-crop habitat), and we defined 

“mosaic vegetation” as 35% cropland (and thus 65% non-crop habitat), for the purposes of 

calculating the proportion of non-crop habitat surrounding each point. We split all non-crop 

habitat into either “grassland” or “woodland”. We defined “woodland” as 100% of classes 

described as “forest” or “shrubland” (classes 40–100, 130, 160, and 170), plus 60% of class 



110 (a “mosaic” class, which is 50–70% “forest or shrubland”), plus 40% of class 120 

(another “mosaic” class, which is 50–70% “grassland”), plus 50% of class 180 (“grassland or 

woody vegetation on regularly flooded or waterlogged soils”), plus 50% of the non-crop 

habitat in the aforementioned “mosaic” classes (20% of class 20 and 32.5% of class 30; see 

above), and we defined “grassland” as 100% of classes described as “grassland or savannah 

or lichens/mosses” or “sparse vegetation” (100% of classes 140 and 150), plus the remainder 

of the non-crop habitat in the mosaic classes (classes 20, 30, 110, 120, 150, and 180; see 

above), such that total “non-crop habitat” = “grassland” + “woodland”. 

 We refer to “protected areas” throughout the text, and we mean “protected areas 

where restricted agricultural use is permitted” and “strictly protected areas where agricultural 

use is not permitted” in terms of the GAEZ definitions of these areas. These definitions were 

based on the World Database of Protected Areas Annual Release 2009 and the NATURA 

2000 network—80% of these areas are “strictly protected” areas (e.g., IUCN II National 

Parks), and 20% are “protected” areas with restrictions on agriculture (e.g., IUCN V 

Managed Resource). Please see the GAEZ documentation for details (Fischer et al., 2012). 

Clearly, there are conservation conflicts on the “agricultural frontiers” of the world, at the 

edge of the wilderness, such as the Amazon and Congo basins, and much of this wilderness is 

not protected. However, we assumed that conservation planning in agricultural landscapes 

would not be a replacement for protected areas. We trust that wilderness areas will be 

designated as protected areas when and where it is possible to do so, and they could then be 

included in future searches for hotspots of conservation conflict. 

 We used Bernoulli models in SaTScanTM v9.2 (Kulldorff, 1997, 2013) to search for 

hotspots and coldspots in the data points. We used SaTScanTM for several reasons. It enabled 

us to use unprojected coordinates (latitude and longitude), whereas many of the other 

methods of cluster analysis that we considered did not, and the use of projected coordinates 

would have resulted in unnecessary distortions to this global analysis. SaTScanTM also 

accounted for the density of cropland in a search area, by testing for the proportion of cases in 

each search area, rather than the number of cases, and this resulted in a test statistic for each 

search area, from which its P-value was calculated. We used the default settings in 

SaTScanTM, except that we limited our searches to maximum areas of 100, 200, or 400 km 

around each point, and we set no restrictions on cluster centers (such that hotspots could 

overlap, and thus the maximum search areas did not restrict the size of the hotspots, because 

many small hotspots that overlapped could form hotspots that were larger than the maximum 



search area). We used the coordinates of the data points as the centers of the search areas (the 

“coordinates file”). 

 We assumed that points could be prioritized in terms of their relative values (e.g., 

points with c-values that were higher than 98% of other c-values were cases). In future 

research, a balance should be found between points that would seem to be the highest 

priorities, because they have “superlative” values (e.g., they have the highest proportions of 

natural habitat), and areas that would not seem to be the highest priorities, but probably 

should be, because they surpass an agriculturally, biologically, or ecologically meaningful 

threshold (e.g., they have enough natural habitat to support a minimum viable population of a 

threatened species), even though they do not have “superlative” values. 

 In the GlobCover 2009 land-cover map, only about 70% of the land cover was 

accurately classified (Bontemps et al., 2011). Nonetheless, GlobCover 2009 was the most 

recent and highest resolution global land-cover map that we knew of (it has a resolution of 

about 300 m at the equator), and therefore we suggest that it was the most appropriate map 

for measuring land cover within relatively small distances of cropland points (1–4 km). 

However, it was not possible to use this map to differentiate between plantation forests and 

natural forests, for example, or to differentiate between intensive grasslands and extensive 

grasslands or natural grasslands, and thus it is not possible to argue that the “non-crop 

habitats” in this analysis are “natural” or “semi-natural” habitats. Nonetheless, “non-crop 

habitats” are sources of heterogeneity in farming landscapes, and heterogeneity is a driver of 

biodiversity and ecosystem services (Benton et al., 2003; Shackelford et al., 2013). 

 The number of threatened species has limitations as a proxy for biodiversity value or 

vulnerability to agriculture. Only a small proportion of all species are on the IUCN Red List 

of Threatened SpeciesTM, only half of these species have geospatial data, and thus there could 

have been spatial bias in this search for hotspots, based on spatial bias in the research on 

threatened species. We had no data on the value of these species in terms of cultural benefits 

(e.g., as charismatic or endemic species) or in terms of agricultural costs (e.g., as crop raiders 

or livestock predators), and we had no data on the vulnerability of these species to 

agricultural intensification (data which does not exist on a global scale, except for 

extrapolated data on birds) (Phalan et al., 2014). 

 The data on yield gaps are rough estimates on a coarse scale (Fischer et al., 2012), 

and closing these yield gaps might not be possible, if investments in rural infrastructure and 



agricultural inputs are not forthcoming, in which case the agricultural landscapes with the 

widest yield gaps might not be at maximum risk of agricultural intensification. However, 

these landscapes might then be at maximum risk of agricultural expansion, if the local food 

supply is unable to meet the local food demand. Thus, landscapes with wide yield gaps might 

nevertheless be hotspots of conflict between agriculture and nature. 

 Closing yield gaps in areas of food insecurity, or areas with high rural populations and 

low rural incomes, might be vital for reducing pressures on natural habitats, and data on 

human populations in the buffer zones of protected areas might be an important predictor of 

the effectiveness of protected area (Wiersma et al., 2004). We did not use any sociological or 

economic data sets in searching for hotspots of conservation conflict. However, in Africa, 

where we found all of the hottest hotspots of conservation conflict, human populations are 

high where species richness is high (Balmford et al., 2001). 

 Because of all these limitations, we stress that the present search for hotspots is only a 

proof of concept, and further research based on this conceptual framework would benefit not 

only from better biological data but also from economic, political, and sociological data. 

Furthermore, “monetized data” on biological, sociological, and economic costs and benefits 

should be used to complement the “non-monetized data” (“threat” and “distance-function” 

data) that we used in this search for hotspots (Naidoo et al., 2006). Data on the cost of land in 

different areas would be especially useful, since the expansion of cropland could be a 

stronger driver of habitat loss in places with lower land costs. 
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