
SUPPORTING METHODS 

Calculating flip angle progression for FLEET-VFA 

The flip angle evolution can be calculated from the Bloch equations and is a function of 

tissue T1 value and recovery time τ. If we assume that the flip angle of the last pulse, 

αNs
, is 90°, then (ignoring T2

* effects) the expression for the flip angle schedule 

[McKinnon, 1993] is 

 

where M0 represents the equilibrium magnetization and Mi represents the magnetization 

remaining after the i-th segment. Given that the T1 values in the brain are much longer 

than the recovery times used in practice for consecutive-segment EPI, we can assume 

that T1 ≫ τ, which yields a simplified expression [Mansfield, 1984; Chapman et al., 

1987; McKinnon, 1993], 

 

with which to calculate the variable flip angle schedule. For example, if the flip angle of 

the last pulse is 90° (to capture all remaining longitudinal magnetization), the flip angle 

of the pulse before should be 45°, and the flip angle of the pulse before that should be 

set to 35.3°. This provides a 45°, 90° sequence (with each shot’s signal consisting of 

71% of the magnetization) for a two-shot segmented ACS acquisition and a 35.3°, 45°, 

90° sequence (with each shot’s signal consisting of 60% of the magnetization) for a 

three-shot segmented ACS acquisition. 

Calculating flip angle progression for FLEET 

While the Ernst angle (about 8–18° for 3T gray and white matter T1 values and typical τ 

values of 20–40 ms) is one candidate for the constant flip angle because it maximizes 

the signal level in the steady state, typically the steady state will not be reached in 

FLEET acquisitions with only 2–6 segments. Furthermore, higher signal levels can be 



achieved in the approach to steady state with slightly larger (e.g., 16–22°) flip angles 

[Hänicke et al., 1990], however these larger flip angles produce steeper transients and 

therefore will increase the difference in signal levels across segments. The choice of flip 

angle is driven by balancing the constraints of having a moderately-high signal level to 

maintain adequate SNR and producing uniform signal levels across segments so as to 

not cause artifacts that could interfere with the GRAPPA kernel training. Given the 

complexity of predicting the tolerance of the GRAPPA training for signal level jumps 

across segments, in this study we empirically determined several FLEET flip angle 

values that performed well. 

Image evaluation: tSNR and ghost level calculation 

Rigid-body motion correction was performed with the AFNI (http://afni.nimh.nih.gov/) 

command 3dvolreg [Cox, 1996; Cox & Jesmanowicz, 1999] using the middle time-

point as a reference. Time-series SNR (tSNR) was calculated from the motion-corrected 

data as the temporal mean divided by the temporal standard deviation after linear 

detrending [Triantafyllou et al., 2011]. In two runs of one 3T session, periods of 

excessive motion greater than 5 mm displacement were detected and discarded—in 

one case the last 25% of frames were discarded, in another the first 40% of frames 

were discarded—but in both cases because of the long duration of the runs there were 

sufficient numbers of time frames for estimating tSNR. 

 Ghost levels (i.e., residual aliasing levels) were quantified by calculating the 

average signal intensity in the ghost region outside of the brain as a percentage of the 

brain signal intensity. The brain signal was defined as the average intensity within a 

brain mask defined automatically using the FSL (http://www.fmrib.ox.ac.uk/fsl/) 

command bet [Smith, 2002]. The ghost signal was defined as the average signal 

intensity within a manually drawn mask outside of the brain along the phase-encoding 

axis (while avoiding voxels containing chemical shift artifact from the fat layer around 

the head); a single mask was drawn for each subject based on the images 

reconstructed from the single-shot EPI ACS data. 

http://afni.nimh.nih.gov/
http://www.fmrib.ox.ac.uk/fsl/


GRAPPA g-factor analysis 

In addition to SNR maps, geometry factor or “g-factor” maps were computed to 

characterize the noise enhancement in the accelerated parallel imaging reconstructions 

[Pruessmann et al., 1999; Breuer et al., 2009]. The g-factor is given by the ratio of the 

SNR of the accelerated acquisition with the SNR of the unaccelerated acquisition 

(normalized by the intrinsic √R loss due to the reduced number of samples in the 

accelerated acquisition). Because of the differential distortions in the accelerated and 

non-accelerated EPI data, calculating a direct ratio between the corresponding SNR 

maps is not possible. Therefore g-factor maps were calculated using a Monte Carlo 

simulation approach [Robson et al., 2008; Triantafyllou et al., 2011]. Briefly, the 10 time-

points in the image series identified as exhibiting the least motion relative to the 

reference time-point (as calculated during the motion correction preprocessing) were 

averaged together in k-space to derive a high-SNR template representing the 

accelerated, undersampled EPI data. This k-space template was then replicated 60 

times, and to each replicate an independent sample of complex-valued Gaussian white 

noise with the same channel noise covariance measured from a noise-only (i.e., 0 V RF 

excitation) thermal noise prescan was added. This synthetic time-series of raw k-space 

data was then written to a file and fed back into the online image reconstruction system 

on the scanner. Image SNR was then calculated directly from the reconstructed 

synthetic data by dividing the mean of each voxel by its standard deviation across the 

replicates. 

GRAPPA artifact map analysis 

While the g-factor provides a useful characterization of the noise enhancement resulting 

from a GRAPPA reconstruction, it does not provide a direct characterization of residual 

aliasing artifacts that can arise for high acceleration factors. To quantify any residual 

aliasing artifacts, we employed a previously described procedure for characterizing 

errors in the GRAPPA reconstruction: first the fully-sampled ACS data were 

undersampled to emulate the accelerated acquisition, then the GRAPPA 

reconstructions of the ACS data were compared to the fully sampled ACS data 



[Polimeni et al., 2008]. This procedure provides a map of the GRAPPA kernel error 

across k-space that captures any residual aliasing that cannot be resolved by the 

GRAPPA reconstruction, which can then be transformed into the image domain to 

produce an artifact map. If the fitted GRAPPA kernel were perfectly consistent with the 

ACS data, there would be no coherent discrepancy between the GRAPPA-

reconstructed ACS data and the fully-sampled ACS data. Therefore, this “GRAPPA 

inconsistency” map captures the inconsistency between the fitted GRAPPA kernel and 

the same ACS data used to train it. 

Regularizing effect of noise 

To test the impact of ACS data SNR on the resulting GRAPPA reconstruction, we 

conducted two additional tests on 3T phantom data. The data was acquired with the 

same 3T R=4 protocol used in the in vivo experiments. For these tests, only the 

conventional consecutive-slice ACS data was required. For both tests, the image 

reconstruction was computed offline in MATLAB. 

 In the first test, we acquired three sets of consecutive-slice ACS data with 

different flip angles: 90°, 20°, and 5° (corresponding to the same flip angles used in the 

FLEET data acquisition). GRAPPA kernels were fit to each of these ACS data sets, and 

these three GRAPPA kernels were used to reconstruct the R=4 accelerated EPI data 

acquired with a 90° flip angle—that is, the flip angle for the accelerated time-series data 

was held at 90° so that the only difference between the three sets of reconstructed time-

series data was the signal level of the ACS acquisition. 

 In the second test, the SNR of the consecutive-slice ACS data was also varied, 

but this time it was controlled by adding noise to the raw k-space data. Specifically, we 

added complex-valued Gaussian white noise to the ACS data (using a procedure 

identical to that used for our g-factor Monte Carlo analysis described above) prior to 

fitting the GRAPPA kernel. In this test, 11 noise levels ranging from 0 to 20 were added 

to the data. Here the noise level is parameterized by the scaling of the thermal noise 

that is added to the image data, so if the ACS data naturally exhibited a tSNR of s/σ 



then a noise level of 1 would yield a tSNR of s/2σ and a noise level of 10 would yield a 

tSNR of s/11σ. 

 To evaluate the effects of ACS SNR on the GRAPPA reconstructions, we 

examined the reconstructed image quality, calculated the image tSNR, and computed 

the GRAPPA inconsistency map to quantify the GRAPPA artifact level. In addition, for 

the second test we also calculated the GRAPPA kernel condition number, which is 

directly related to the noise enhancement imparted by the application of the GRAPPA 

kernel and so is akin to an average GRAPPA g-factor. Together these evaluations 

provided measures of both artifact level and noise level as a function of the ACS data 

SNR. 

 

SUPPORTING DISCUSSION 

ACS SNR and the regularizing effect of noise on GRAPPA kernel training 

Although both the FLASH-based and FLEET-based ACS schemes are “consecutive-

segment” approaches, and both eliminate the discontinuous SNR across slices, the 

acquisitions differ in terms of the SNR of the ACS data. Both the SNR0 and tSNR are 

expected to differ between the acquisition schemes. Low-SNR ACS data may affect the 

GRAPPA kernel training and could lead to artifacts and noise enhancement in the final 

images. A comparison of the SNR0 between the ACS schemes tested, for R=2 and R=3 

acceleration factors, is presented in Supporting Fig. 3. The consecutive-slice ACS 

image exhibits the highest SNR0 of all methods tested (mean SNR0: 148,137,151 for the 

R=2, 3, 4 data, respectively), yet the tSNR of the resulting reconstructions using these 

ACS data is the lowest (see Fig. 4); therefore, as expected, the SNR0 of the ACS data is 

not the sole determinant of final image quality. (Also residual ghosting appears in the 

R=3 consecutive-slice ACS data, presumably due to phase errors between k-space 

segments, which likely gives rise to the low-quality image reconstructions generated 

from these ACS data.) The SNR0 is considerably lower for the FLEET20-ACS data 

(75,78,81) and lower still for the FLEET5-ACS data (22,24,26), with the FLASH-ACS 



SNR0 (42,44,43) being intermediate between the FLEET-based methods. The 

relationship between SNR0 of the ACS data and the resulting accelerated image quality 

is therefore not straightforward. However, when using either FLASH- or FLEET-based 

approaches, several protocol parameters for the ACS data can be adjusted 

independently from the image data (e.g., the flip angle), which provides some flexibility 

to increase SNR0 of the ACS data as needed. 

 Although the reordered acquisition employed in the FLEET, FLEET-VFA, and 

FLASH data results in a lower SNR0 compared to the consecutive-slice acquisition, the 

reordering provides GRAPPA training data that is more robust to motion and dynamic 

B0 changes and yields improved tSNR in the accelerated reconstruction. The 

relationship between the SNR0 of the this training data and the image reconstruction 

performance of the derived kernels is complicated in part by the regularizing effect that 

noise can have on the kernel training [Sodickson, 2000]. In cases where the ACS data 

are not completely consistent with the GRAPPA equations, such that no one kernel 

accurately captures the relationship between local k-space data in a shift-invariant way 

across all of k-space, the addition of noise can help to make the system of linear 

equations formed in the GRAPPA training more consistent, and can act to improve the 

condition number. This may partly explain the results shown in Fig. 9, where even in 

phantom data (where no motion or respiration is present) the tSNR achieved when 

using FLASH or FLEET-ACS data is improved compared to what is achieved when 

using consecutive-slice ACS data. 

 To better understand the relationship between ACS signal and noise levels and 

the resulting tSNR generated by the corresponding GRAPPA kernel, we performed two 

additional phantom experiments (see Supporting Methods). First, we tested whether 

simply reducing the flip angle in a conventional consecutive-slice ACS acquisition would 

impact the resulting tSNR in the GRAPPA-reconstructed time-series data; for this test 

the flip angle for the accelerated time-series data was held at 90° so only the signal 

level of the ACS acquisition was varied. The results are summarized in Supporting Fig. 

4, where it is clear that the artifact level worsens and tSNR improves as the ACS flip 

angle is reduced, suggesting a regularization effect due to the increased noise level. 



Second, we examined the effect of ACS data SNR by incrementally adding noise to the 

ACS data, and the results are shown in Supporting Fig. 5. In agreement with the results 

of Supporting Fig. 4, artifact levels worsen and tSNR improves with increasing noise 

(Supporting Fig. 5A–B). In addition, as the noise level of the ACS data is increased, we 

observe a marked improvement in the numerical conditioning of the GRAPPA kernel 

training which leads directly to an improved g-factor (Supporting Fig. 5C). The 

summary, shown in Supporting Fig. 5D, highlights how this effect of ACS SNR on 

GRAPPA reconstruction artifact and tSNR represents a classic bias-variance trade-off. 

In other words, while low SNR in the ACS data can regularize the GRAPPA kernel fit 

and provide higher tSNR in the GRAPPA-reconstructed time-series, it can also cause 

increased image artifacts.  

 There are several implications of this behavior. The lower SNR seen in FLEET 

(and FLASH) ACS data may contribute to the higher tSNR seen in the corresponding 

GRAPPA reconstructions, thus the lower flip angles employed in these acquisitions may 

not actually be a disadvantage—to a point. However, while simply reducing the flip 

angle on a consecutive-slice ACS acquisition might regain some tSNR, it is expected to 

increase the artifact levels from the corresponding GRAPPA reconstructions, and our 

results indicate that the artifact levels seen in the FLEET-ACS-based GRAPPA 

reconstructions are already as low or lower than those seen in the consecutive-slice 

ACS-based GRAPPA reconstructions (see Fig. 5). Furthermore, the FLEET-ACS 

strategy provides critical insensitivity to motion and dynamic B0 changes during the 

acquisition. 

 In summary, the relationship between ACS data SNR and final reconstruction 

quality is complex, and ACS SNR represents an additional parameter that can be 

adjusted when optimizing an acquisition protocol to control of the trade-offs between 

resulting artifact and noise levels. 

 

Removal of discontinuous tSNR through breath-holding 



The spatially-varying instability manifested as discontinuous tSNR across slices, was 

removed when a breath-hold was performed during the ACS acquisition. This 

observation points to dynamic B0 changes during the ACS acquisition—which generate 

phase errors across EPI segments—causing a loss of temporal stability. These phase 

jumps between segments are presumably imparted on by the B0 offset driven by the 

changes in chest cavity volume during respiration, which can reach up to 2.3 Hz at 3T 

[Van de Moortele et al., 2002]. Not only did the dynamic B0 changes cause a 

discontinuous tSNR across slices, but the overall tSNR was seen to be lower in the 

free-breathing run relative to the breath-hold run shown in Fig. 7, suggesting that (in this 

example at least) none of the slices were free of phase errors across segments, 

therefore all slices exhibited reduced tSNR, yet some slices contained more severe 

phase errors than others. Note that even if the slices were acquired sequentially there 

would still be a problematic slice-dependent phase error, but the pattern of tSNR losses 

would be different. 

 

Sensitivity of GRAPPA to phase jumps across segments versus signal-level jumps 

across segments 

The precise dependence of the GRAPPA kernel fitting on the level of phase errors in 

multi-shot EPI ACS data is unclear. In some cases direct image reconstructions of the 

consecutive-slice multi-shot EPI ACS data themselves were generated, and a low level 

of ghosting was apparent (e.g., the R=2 case shown in Supporting Fig. 3), yet a loss of 

SNR was seen in the accelerated image reconstructions based on this ACS data. It 

appears therefore that GRAPPA is quite sensitive to these phase errors, and that 

potentially the requirements for admissible multi-shot EPI ACS data should be stricter 

than multi-shot EPI data used for other purposes. While some attempt has been made 

to equalize the signal levels across segments, especially in the case of our FLEET-VFA 

data (see Methods), GRAPPA appears to be more sensitive to ACS phase errors. 

Further investigations will be required to better understand this sensitivity, and perhaps 

to adapt the kernel training to be less influenced by phase errors. 



 

Optimal flip angles in FLEET acquisitions used for GRAPPA kernel training 

The choice of flip angle for the FLEET-ACS data must also balance between 

maximizing the signal level and maintaining a uniform signal level across segments. A 

demonstration of the approach to steady state following a train of constant flip angle 

excitations is provided in Supporting Fig. 1 assuming the approximate T1 value of 

cortical gray matter at 3T (1600 ms) and the recovery time τ for the R=4 FLEET-ACS 

acquisition (19.3 ms). Although the approach to steady state can be controlled by the 

choice of flip angle, it is unclear how uniform the signal levels must be across segments 

to provide suitable ACS data for GRAPPA kernel training. The signal levels across the 

segments can be partially equalized during image reconstruction preprocessing [Kim et 

al., 1996], yet for most in vivo imaging scenarios there will still be differing levels of T1 

contrast across segments which will be difficult to remove through normalization. 

Despite these complications, empirically the GRAPPA kernel training appears to have 

been successful over the range of FLEET flip angles tested. Further work will be 

necessary to determine the optimal flip angle for FLEET-ACS data used for GRAPPA 

calibration. 

 

ACS data distortion-matched to the accelerated EPI 

The proposed FLEET-based ACS has the same echo-spacing as the effective echo-

spacing of the accelerated data, and therefore the GRAPPA kernel is trained to data 

that have the same geometric distortion as the accelerated image data to which it is 

applied. Our results indicate that at 7T and in the presence of deliberate B0 shim offsets 

at 3T this approach provides higher image quality than approaches where the ACS data 

have either more (as in the case of the single-shot EPI ACS data) or less (as in the case 

of the FLASH-ACS data) distortion than the accelerated EPI data. One way to 

understand the impact of differential distortion between the GRAPPA kernel and the 

accelerated image data is to consider the k-space representation. A susceptibility 



gradient alters the spacing of the k-space data (locally increasing or decreasing the 

image resolution and scale in the phase-encode direction). The size of the k-space 

spacing change is dependent on the velocity in k-space in the phase-encode direction. 

If the ACS and image data are not matched in this respect, essentially a kernel is fit that 

is inappropriate for the image data. 

The 7T experiments, summarized in Fig. 8, largely confirm the observations 

made at 3T. Fig. 8A demonstrates that, for a 3-mm isotropic voxel size, the tSNR from 

the images reconstructed with consecutive-slice multi-shot EPI ACS data is dramatically 

lower than the tSNR from images reconstructed with FLEET-ACS data or FLASH-ACS 

data. The effect of ACS data acquisition scheme appears to be stronger for this voxel 

size than seen in the 3T results (Fig. 3), perhaps due to the stronger off-resonance 

effects during respiration at 7T. However for the experiments with higher-resolution 

data, the discrepancy in tSNR between the various ACS approaches is more subtle. 

This may be partly caused by increased thermal noise dominance over physiological 

noise in the small voxels [Triantafyllou et al., 2005, 2011], which may render the ACS 

data less sensitive to phase errors due to respiration. Furthermore, in the data acquired 

with the highest resolution tested, 1-mm isotropic, the residual aliasing seen in the 

images reconstructed with FLASH-ACS data appears to be reduced relative to the 

images reconstructed with FLEET-ACS data. This could be caused by the reduced 

geometric distortion of the R=4 accelerated EPI data and the resulting reduced 

mismatch between it and the effectively undistorted FLASH-ACS data. 

While the reconstructions from the FLEET-ACS data perform well in the 

presence of both naturally-arising and deliberately-induced off-resonance, a high-

frequency edge artifact is seen in the reconstructions as shown in the example of Fig. 5. 

The exact cause of this unresolved aliasing artifact—or the stronger, low-frequency 

artifact in the reconstructions based on the FLASH-ACS data—is currently not 

completely understood but is a topic of future investigation. 

 



Acquisition time of ACS data 

The conventional consecutive-slice multi-shot ACS approach is made vulnerable to 

motion artifacts by the time interval imposed between the acquisition adjacent segments 

within a slice. This vulnerability is increased with the number of slices and with the 

acceleration factor, such that, for example, a whole-brain high-resolution protocol with 

R=4 acceleration and a 5 s TR results in a time interval of 15 s between the acquisition 

of the first and last segments in each slice, making any head movement or breathing 

during this 15 s period able to corrupt the GRAPPA kernel training. In comparison, when 

the segments are re-ordered, all ACS segments for a given slice are acquired in less 

than 0.2 s. Thus the standard segmented ACS acquisition is a particularly vulnerable 

period. Any movements within this time window create artifacts in the ACS data and 

infect the entire time-series by repeatedly applying the corrupted GRAPPA kernel.  

Table 1 shows that, while the FLASH protocol was optimized to yield short 

acquisition durations, still the FLEET protocols yield consistently shorter acquisition 

durations per slice. For FLEET the duration is a function of the number of shots (which 

is equivalent to the acceleration factor) and the number of ACS preparation pulses 

(determined based on the ACS flip angle), whereas the FLASH scan is not, so for 

extreme acceleration factors (e.g., R ≥ 8) the two will have comparable durations. 

 

Alternate approaches to achieve robust auto-calibration 

Other approaches to remedy the vulnerability of multi-shot, segmented EPI to motion 

and B0 changes across segments include direct alignment of phase between segments 

in post-processing, although typically these methods require extra information or 

additional scans [Hoge et al., 2010; Chen et al., 2013]. Bulk, rigid head motion could 

potentially be addressed by either image-based [Tisdall et al., 2012] or external sensor-

based [Zaitsev et al., 2006; Schulz et al., 2012] motion tracking along with either real-

time feedback to the gradient system or a model for how the motion impacts the 

information acquired across the multiple, interleaved segments. However, independent 



motion (e.g., of the eyes) during ACS acquisition may not be easily incorporated into 

this framework. Dynamic B0 changes in the brain driven by respiration tend to exhibit a 

spatially inhomogeneous distribution and vary spatially within and across subjects [Van 

de Moortele et al., 2002; van Gelderen et al., 2007], and therefore are challenging to 

remove, although dynamic shimming methods attempt to remove these changes 

[Morrell & Spielman, 1997; van Gelderen et al., 2007; Juchem et al., 2011]. Field probes 

have been introduced to measure respiratory phase changes which can be recorded for 

subsequent correction [Vannesjo et al., 2014]. Additionally, sophisticated methods have 

been developed to remove the two-dimensional pattern of phase offsets that are 

generated between segments due to B0 changes [Chen & Wyrwicz, 2004; Xu et al., 

2010; Zur, 2011], although simpler strategies employing one-dimensional navigators are 

known to perform relatively poorly [Barry & Menon, 2005; Barry et al., 2008]. Other 

potential strategies to reduce ACS corruption include training subjects either to be 

especially still during the ACS acquisition, including maintaining eye fixation to avoid 

eye movements, and requesting that subjects perform a breath-hold. These strategies 

may be limited to healthy, motivated subjects and are prone to break down if the subject 

is not fully compliant. 
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Supporting Fig. 1: Approach to steady-state magnetization with a train of excitation pulses. Transverse signal levels 
were calculated, using the well-known analytic expression, for a range of constant flip angles assuming the 
approximate T1 value of cortical gray matter at 3 T (1600 ms) and the recovery time τ for the R=4 FLEET ACS 
acquisition (19.3 ms). Signal levels are normalized to the equilibrium magnetization and correspond to transverse 
signal immediately following a series of excitations. Normalized signal level curves are plotted for RF pulse flip angles 
5° (blue line), 10° (green line), 20° (red line), 45° (cyan line), and 80° (magenta line), as well as the Ernst angle, 8.9° 
(dashed black line) for these recovery time and tissue T1 values. While the highest flip angle of 80° converges after the 
least number of excitation pulses, the signal level at this steady-state value is the lowest of all flip angles tested. An 
intermediate flip angle of 20° yields high signal levels after the initial few excitations but in this initial phase the signal 
level changes steeply after each additional excitation and is slow to converge. The signal level produced by excitations 
at the Ernst angle (8.9°) converges to the highest signal level of all flip angles tested, however during the initial phase 
the signal levels change by about 20%. The low flip angle of 5° achieves a relatively flat signal level during the initial 
few excitations and at a moderately high signal level, and therefore may represent the best choice for maintaining a 
constant signal over a range of about 5–10 excitations. These curves demonstrate the three-way trade-off between: 
the speed with which the final steady state can be achieved, the signal level during the transient approach to steady 
state, and rate of the absolute signal change from one excitation to the next. 

τ = 19.3 ms, T1 = 1600 ms, αErnst = 8.9° 



Supporting Fig. 2: Noise 
enhancement or GRAPPA “g-
factor” maps (plotted as 1/g 
for visualization) for one 
example subject, generated 
from Monte Carlo analysis 
and offline image 
reconstruction. Reciprocal g-
factor maps, equivalent to 
“normalized percent image 
SNR retained” maps, shown 
from a set of contiguous slices 
(LEFT). Map depicts 1/g 
values below 1.0 with a color 
scale and values above 1.0 
with a gray scale to 
differentiate regions where 
the g-factor is less than 1 (see 
text). Note that the frames 
surrounding each map denote 
the image Field of View. 
Corresponding histograms of 
1/g values, taken from brain 
mask region extending across 
all slices in acquisition 
(RIGHT). Above each histo-
gram is the corresponding 
mean 1/g value from the 
distribution within the mask. 
(A) Maps from R=2 data. (B) 
Maps from R=3 data. (C) Maps 
from R=4 data. 
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Supporting Fig. 3: Image SNR maps of the ACS data used in the GRAPPA training. The image SNR is highest for the 
conventional consecutive-slice multi-shot EPI (reconstructed using only linear phase alignment between segments), 
but ghosting artifacts due to phase errors can be easily seen, and these phase errors are likely the cause of the 
resulting poor GRAPPA reconstructions. The FLEET EPI images with αi = 20° exhibits more image SNR than the FLASH 
images, and FLEET EPI images with αi = 5° exhibit the lowest image SNR. (Insets show maps scaled by a factor of 5, for 
better visualization.) 
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Supporting. Fig 4: Effect of ACS flip angle and signal level on GRAPPA reconstruction image artifact levels 
demonstrated with an R = 4 accelerated agar phantom acquisition, shown across six image slices. (A) Image 
reconstructions using conventional consecutive-slice ACS acquisitions with an ACS flip angle of 90°, 20°, and 5°. The 
accelerated image acquisition was set to 90° for all reconstructions, only the flip angle for the ACS acquisition was 
allowed to vary. As the ACS flip angle is decreased, stronger aliasing artifacts (mostly appearing as aliased replicated of 
phantom edge) appear in image reconstructions. Red arrowheads indicates locations where strong aliasing is apparent 
in reconstruction based on 5° ACS data but is not apparent in reconstruction based on 90° ACS data. (Slice numbers 
are and phase-encode direction are indicated in first panel. Slice ordering is consistent throughout figure.) (B) Same 
image reconstructions shown in (A) windowed to highlight artifacts. As the ACS flip angle is decreased, the aliasing 
artifacts seen in the image background appear to sharpen and become more spatially structured—the aliasing 
appears to be more structured in the reconstruction using ACS data with a flip angle of 5°, whereas the aliasing 
artifacts in the reconstruction using ACS data with a flip angle of 90° are more spatially incoherent. (C) This trend 
towards stronger aliasing artifact with decreasing ACS flip angle is verified in the corresponding inconsistency maps. 
The systematic error resulting from aliasing is strongest and most coherent in the reconstruction using ACS data with 
a flip angle of 5°. 
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Supporting Fig. 5: Regularizing effect of noise demonstrated by adding increasing levels of noise to conventional 
consecutive-slice ACS data for an R = 4 accelerated agar phantom acquisition. (A) GRAPPA inconsistency maps depict 
increasing levels of systematic error with increasing additive noise levels in the ACS data. Additive noise level is 
indicated in each panel. (The noise level is parameterized by the scaling of the thermal noise that is added to the 
image data, so if the ACS data naturally exhibited a tSNR of s/σ then a noise level of 1 would yield an tSNR of s/2σ and 
a noise level of 10 would yield a tSNR of s/11σ.) Slice number and phase-encode direction are indicated on first panel. 
The images reconstructed with GRAPPA kernels fit to the noisiest ACS data exhibited the strongest artifacts. (B) 
Corresponding tSNR maps from the resulting GRAPPA-reconstructed time-series data across the additive noise levels. 
The tSNR clearly increases as noise is added to the ACS data. (C) Summary of the effect of additive noise on the 
conditioning of GRAPPA. The condition number is related to the g-factor, with low numerical conditioning yielding 
lower g-factors and thus higher tSNR. The condition number varies smoothly across slices but decreases substantially 
with increasing noise level, indicating that lower noise levels will provide higher tSNR. (D) Measured trade-off 
between artifacts and noise in image reconstruction as a function of noise level. The average inconsistency (calculated 
from the maps shown in (A)) increases steadily with additive noise level, whereas the condition number decreases. 
Therefore, while adding noise (or reducing signal) in the ACS data may improve tSNR, it will also lead to an increase in 
aliasing artifacts. 
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