**Supporting Information** 

## Clotting Mimicry from Robust Hemostatic Bandages Based on Self-Assembling Peptides

Bryan B. Hsu<sup>1,4,5</sup>, William Conway<sup>3</sup>, Cory M. Tschabrunn<sup>6</sup>, Manav Mehta<sup>7</sup>, Monica Perez-Cuevas<sup>8</sup>, Shuguang Zhang<sup>9</sup>, and Paula T. Hammond<sup>2,4,5,\*</sup>

Departments of <sup>1</sup>Chemistry, <sup>2</sup>Chemical Engineering, and <sup>3</sup>Physics Massachusetts Institute of Technology Cambridge, MA 02139

> <sup>4</sup>Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge, MA 02139

<sup>5</sup>Institute for Soldier Nanotechnologies Cambridge, MA 02139

<sup>6</sup>Harvard-Thorndike Electrophysiology Institute Beth Israel Deaconess Medical Center Harvard Medical School, Boston MA 02215

> <sup>7</sup>3-D Matrix Medical Technology Waltham, MA 02451

<sup>8</sup>Georgia Institute of Technology School of Chemical & Biomolecular Engineering Atlanta, GA 30332

<sup>9</sup>Center for Bits & Atoms Massachusetts Institute of Technology Cambridge, MA 02139

\*Corresponding Author



**Figure S1 | Characteristics of different dip-LbL assembled films deposited onto silicon.** Different types of polyanions used in (RADA16-I/polyanion)<sub>40</sub> films results in different RADA16-I loadings and film thicknesses, which can be attributed to their differences in intrinsic chemical characteristics.



**Drying Intervals** 

Figure S2 | Effect of drying intervals during LbL film assembly on film thickness. Film growth characteristics of dip-LbL assembled (RADA16-I/SPS)<sub>40</sub> (n = 6) and (RADA16-I/PAA)<sub>40</sub> (n = 6) films with intermittent dry steps shows that introduction of a drying step can increase the amount of film deposited.



**Figure S3 | Surface morphologies of uncoated substrates**. SEM images of an uncoated glass slide (**A**), gauze (**B**), and gelatin sponge (**C**) revealing relatively smooth surfaces as compared to those coated with LbL films. Higher magnification images can be found in Figure 4. Scale bars represent 10  $\mu$ m (**A-B**) and 100  $\mu$ m (**C**).



Figure S4 | Surface morphologies of gauze coated by alternative, non-LbL methods. SEM images of two representative regions with coating (A,C) and without coating (B,D) of gauze after immersion in a RADA16-I solution (A,B) or spray-LbL coated with (RADA16-I/nothing)<sub>200</sub> films (C,D) show some areas of deposition, but is largely uncoated and inconsistent. Scale bars represent 1 µm.



Figure S5 | Release of RADA16-I from dip-LbL assembled films. Release profiles of (RADA16-I/polyanion)<sub>40</sub> films incubated in PBS, pH 7.4 at 37°C.

| Score | Description                                    |
|-------|------------------------------------------------|
| 0     | No bleeding                                    |
| 1     | Very slight bleeding                           |
| 2     | Slow and steady bleeding                       |
| 3     | Moderate bleeding with well defined blood flow |
| 4     | Severe bleeding that flows freely              |
|       |                                                |

 Table S1 | Scoring criteria for the severity of skin wound puncture bleeding.
 Wounds were scored blind to the type of sample applied (i.e., LbL-coated or uncoated gauze).