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1 Proofs that the static and adaptive methods control the
family-wise error rate, FWER

1.1 Models and likelihoods

We are investigating a case-control cohort of n subjects. Let Y ∈ {0, 1}n be a binary random
variable representing a case-control phenotype, such that Yi = 1, i ∈ [n] indicates that a subject
i is diseased and Yi = 0 indicates that it is healthy. Let Xij ∈ {0, 1, 2} be a random variable
representing the genotype of variant i in subject j. We will use lower case letters (e.g., xij) to
indicate corresponding (observed) values of these random variables (e.g., Xij).

We are interested in modelling the probability

Pr [Yi = 1 | X1i = a,X2i = b] = pa,b

of being a case given the genotypes for a variant pair (X1, X2) and a parameter p = {pa,b : a, b ∈
{0, 1, 2}} and test various assumptions about the parameters of this model. The likelihood for a
given pair is then

l(p; y | x1, x2) =
n∏
i=1

pyix1i,x2i
(1− px1i,x2i

)1−yi ,

There are several possible models for pab each with a different number of parameters

• g(pa,b) = α

• g(pa,b) = α+ βa

• g(pa,b) = α+ γb

• g(pa,b) = α+ βa + γb

where g is an invertible function usually called a link function. We enumerate these null hypotheses
H1, . . . , H4 according to the order above. We let HA be the saturated alternative hypothesis

g(pa,b) = α+ βa + γb + δab

(notice that for all the models above, we set, where relevant, β0 = γ0 = δ0b = δa0 = 0 to avoid
over-parametrization.)

The hypothesis of interaction states that there is at least one allele pair (a, b) such that δab 6= 0.
Each of these null hypotheses Hk, k ∈ [4], may be tested by means of a likelihood ratio statistic

Λk = −2 log

(
maxp∈Hk l(p; y | x1, x2)

maxp∈HA l(p; y | x1, x2)

)
d−→ χ2(dk) as n→∞,
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that converges in distribution to a χ2 random variable with dk degrees of freedom if hypothesis
Hk is true, and

Λk →∞

if hypothesis Hk is false. The degrees of freedom dk is the difference in the number of parameters
between the saturated model and hypothesis k.

So far we have only considered a single pair, now we must extend the notation to handle
multiple pairs. To avoid having more than two indices per variable, we will enumerate the pairs
by a single index from 1 to M . We extend our notation in the natural way, so that we have
likelihood ratio statistics Λi,k, for pair i and hypothesis Hk. We next create a new variable

Ui,k = 1− Fk(Λi,k)
d−→ U(0, 1)

where Fk is the χ2 distribution function with dk degrees of freedom, the convergence is due to the
continuous mapping theorem [1]. This variable corresponds to the p-value for the test statistic.
This serves to illustrate that all variables are computed before we determine their significance.
We define a per stage test variable, φi,k, that indicates whether a certain hypothesis was rejected

φi,k = I(Ui,k < αk)

where αk are different for the static and adaptive method. Finally, we define a joint test variable
for the joint stage-wise test up to stage k,

ψi,k =

k∏
l=1

φil.

1.2 Proof for the control of FWER

Let T ∗i ⊆ H be a set of indices, such that for each k ∈ T ∗i , Hk is true for variant pair i. We can
then define the random variable, E, that counts the number of erroneous rejections as

E =

M∑
i=1

∑
k∈T∗

i

ψi,k.

The FWER is now simply the probability of E > 0, that is, Pr [E > 0]. We have,

Pr [E > 0] = Pr

 M∑
i=1

∑
k∈T∗

i

ψi,k > 0


≤

M∑
i=1

Pr

∑
k∈T∗

i

ψi,k > 0

 . (1)

To simplify keeping track of the different T ∗i for different i in the following sections, we will
reformulate Equation (1). Let S∗τ be the set of indices, such that for each i ∈ S∗τ , τ is lowest index
in T ∗i . Then,

Pr [E > 0] ≤
M∑
i=1

Pr

∑
k∈T∗

i

ψi,k > 0


=

K∑
τ=1

∑
i∈S∗

τ

Pr

∑
k∈T∗

i

ψi,k > 0

 . (2)
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1.2.1 The static method

In this section we will make use of the closed testing principle [2]. This is possible since, for the
static method, we have

αk = wk
α

Vk
,

where Vk is an a priori estimate of |S∗k |, independent of the variant pair i; such that Vk ≥ |S∗k |.
Moreover, H = {H1, . . . ,HK} is closed. That is, H is an ordered set of nested hypothesis such
that if Hk ⊆ Hl then k < l, and if T ∈ [K] is a set of indices, then there exists a τ ∈ T that
constitutes the intersection hypothesis of T , that is, ∩k∈THk = Hτ . For any arbitrary variant pair
i, we have the following Lemma:

Lemma 1. For a closed set H, suppose that we for each hypothesis Hk ∈ H have a test φi,k,

such that Pr [φi,k = 1 | Hk is true] = αk. Moreover, let ψi,k =
∏k
l=1 φi,l. Let A be the event that

any hypothesis is erroneously rejected for variant pair i, that is, A =
{∑

k∈T∗
i
ψi,k > 0

}
, where

T ∗i ⊆ [K] contains indices of all true null hypotheses for variant pair i. Then, the event A will be
controlled at the level of the intersection hypothesis, Hτ , of T ∗i ; in other words:

Pr [A] = Pr

∑
k∈T∗

i

ψi,k > 0

 ≤ ατ .
Proof. First, notice that for any k > 1, we have Pr [ψi,k > 0] = Pr [φi,k = 1] Pr [ψi,k−1 > 0|φi,k = 1] ≤
αk, since Pr [ψi,k−1|φi,k = 1] ≤ 1. Let B be the event that ψi,τ = 1. We have

Pr [A ∩B] = Pr [B] Pr [A | B] ≤ ατ

since Pr [B] = Pr [ψi,τ = 1] ≤ αk and Pr [A | B] ≤ 1. It is clear that B = {ψi,τ = 1} ⇒ A.
Moreover, since, for any k ∈ T ∗i , k > τ , we have τ ≤ k, it follows, by induction on ψi,k = ψi,k−1φi,k,
also that ¬B = {ψi,τ = 0} ⇒ {ψi,k = 0, k ∈ T ∗i } = ¬A. Thus, A occurs if and only if B occurs
and, consequently, we have that A ∩ B = A and thus Pr [A] = Pr [A ∩B] ≤ αj which gives the
desired result. This completes the proof.

We can now state the main results of this section.

Theorem 2. The static method controls the FWER at the level of α, that is,

Pr [E > 0] ≤ α

Proof. Using Equation (2) and Lemma 1, we see that

Pr [E > 0] ≤
K∑
τ=1

∑
i∈Sτ

Pr

∑
k∈T∗

i

ψi,k > 0


≤

K∑
τ=1

∑
i∈Sτ

ατ

=

K∑
τ=1

∑
i∈Sτ

wτ
α

Vk

≤
K∑
τ=1

∑
i∈Sτ

wτ
α

|Sτ |
= α.

This completes the proof.
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1.2.2 The adaptive method

For the adaptive method, αk is not fixed a priori. Instead, we have

αk =


w1α
K if k = 1

1 if
∑K
i=1 φi,k−1 = 0

wk
α∑K

i=1 φi,k−1
otherwise.

As a consequence, we cannot rely on the closed testing principle as in Lemma 1. Instead, we must
restrict our proof to an asymptotic setting corresponding to a fixed alternative hypothesis. In this

case, since φi,k is a consistent test, we have that φi,k
p−→ 1 if Hk is false, and consequently, since

this imply
∑K
i=1 φi,k−1

p−→ |S∗k |, we have

αk =


w1α
K if k = 1

1 if |S∗k | = 0

wk
α
|S∗
k |

otherwise.

Similarly as for the static method, we start by giving a lemma relating to a fixed arbitrary
variant pair i.

Lemma 3. Let T ∗i ⊆ H be the set of true hypotheses for variant pair i and let τ be the lowest
index in T ∗i . Then in the asymptotic case, we have∑

k∈T∗
i

ψi,k > 0⇔ φi,τ > 0.

Proof. We first show that ∑
k∈T∗

i

ψi,k > 0⇔ ψi,τ > 0. (3)

Let τ be the lowest index in T ∗i , then

∑
k∈T∗

ψi,k = ψi,τ

1 +

∑
k∈T ∗\τ

k∏
l=τ

φi,k

 .

Since, clearly, ψi,τ = 0⇔
∑
k∈T∗ ψk = 0, Equation (3) follows.

Now notice that, in the asymptotic case, φi,k
p−→ 1 if Hk is false. This imply that since Hτ is

the first true hypothesis tested, then

ψi,τ = φi,τ

τ−1∏
k=1

φi,k = φi,τ ,

which completes the proof.

We can now state the main result of this section.

Theorem 4. In the asymptotic case, the adaptive method controls the FWER at the level of α,
that is

Pr [E > 0] ≤ α.
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Proof. Using Equation (2) and Lemma 3, we have

Pr [E > 0] ≤
K∑
τ=1

∑
i∈S∗

τ

Pr

∑
k∈T∗

i

ψi,k > 0


=

K∑
τ=1

∑
i∈S∗

τ

Pr [φi,τ > 0]

≤
K∑
τ=1

∑
i∈S∗

τ

ατ

=

K∑
τ=1

∑
i∈S∗

τ

wτ
α

|S∗τ |
= α.

This completes the proof.

2 Proof that the likelihood for models H1, H2, H3 and HA is
invariant of the link function.

In this section we will derive closed maximum likelihood expressions for our additive single variant
models as well as for the saturated model, and moreover show that the likelihood does not depend
on the link function.

We start by considering the additive single variant models

g(pab) = α,

g(pab) = α+ βa, and

g(pab) = α+ γb.

Let ni,k be the number of individuals with genotype i and affection k (case/control). Since none
of these models depend on both variants we can simplify notation write all models in the form

g(pi) = α+ βi (4)

substituting βi for 0, βa and γb, respectively, to obtain the original models.

Theorem 5. The maximum likelihood of the model defined by Equation (4) is

max
α,β

l(α, β) =

2∏
i=0

(
ni1

ni1 + ni0
)ni1(

ni0
ni1 + ni0

)ni0 ,

and is consequently independent of the link function g−1(α, β).

Proof. The likelihood for this GLM can be written

l(α, β) = (g−1(α))n01(1− g−1(α))n00

2∏
i=1

(g−1(α+ βi))
ni1(1− g−1(α+ βi))

ni0

The maximum likelihood score (the gradient of the log likelihood function) equations are

∂ log l(α, β)

∂α
=

n01
g−1(α)

∂g−1(α)

∂α
− n00

1− g−1(α)

∂g−1(α)

∂α

+

2∑
i=1

ni1
g−1(α+ βi)

∂g−1(α+ βi)

∂α
− ni0

1− g−1(α+ βi)

∂g−1(α+ βi)

∂α
= 0 (5)

∂ log l(α, β)

∂βi
=

ni1
g−1(α+ βi)

∂g−1(α+ βi)

∂βi
− ni0

1− g−1(α+ β)i

∂g−1(α+ βi)

∂βi
= 0 (6)
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We first note that, clearly,

∂g−1(α+ βi)

∂βi
=
∂g−1(α+ βi)

∂α
,

and moreover, since g−1 is invertible and therefore on-to-one, that

∂g−1(α+ βi)

∂α
6= 0.

Thus, simplifying and rearranging Equation (6) gives

∂g−1(α+ βi)

∂βi

(
ni1

g−1(α+ βi)
− ni0

1− g−1(α+ β)i

)
= 0

ni1
g−1(α+ βi)

− ni0
1− g−1(α+ β)i

= 0

g−1(α+ βi) =
ni1

ni1 + ni0
(7)

Moreover, inserting Equation (6), once for each i ∈ {1, 2}, into Equation (5) we get

n01
g−1(α)

∂g−1(α)

∂α
− n00

1− g−1(α)

∂g−1(α)

∂α
= 0

g−1(α) =
n01

n01 + n00
(8)

Using Equations (7) and (8), we get the following likelihood evaluated at the maximum likelihood
parameters

max
α,β

l(α, β) = (
n01

n01 + n00
)n01(

n00
n01 + n00

)n00

2∏
i=1

(
ni1

ni1 + ni0
)ni1(

ni0
ni1 + ni0

)ni0 .

Consequently, the likelihood is identical regardless of g. This completes the proof.

We now consider the saturated model defined by

g(pab) = α+ βa + γb + δab.

For this model, we have the following theorem:

Theorem 6. The maximum likelihood expression for

l̂(α, β, γ, δ) =

2∏
i=0

2∏
j=0

(
nij1

nij1 + nij0
)nij1(

nij0
nij1 + nij0

)nij0

and is consequently invariant to the choice of link function.

The proof is omitted, but can, in a corresponding way to the proof for Theorem 5 above, be derived
by setting up and solving the corresponding system of maximum likelihood score equations.

We end by observing that there are no similar closed form expressions for the additive model
g(pab) = α+ βi + γj that are independent of the choice of link function.
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