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Power for specific models of interaction

There are numerous models of interaction that can be tested. In the main text, we evaluate
our static stage-wise method and seven additional methods on simulated data generated from
a spectrum covering all possible interaction models. Here, we supplement that analysis with a
power comparison of nine methods using data simulated from specific interaction models together
with data from null models. We evaluated four specific interaction models described in Table
S2 text.1. The two first models describe interaction caused by the combination of risk alleles
from each variant, either in a dominant manner (Double dominant) or in a recessive manner
(Double recessive). The last two models describe interaction caused by heterozygote-homozygote
combinations, either by all possible such combinations (XOR) by one specific such combination
(Side).

We used a similar setup as in the main text Materials and methods section Generation of
synthetic data for FWER estimation. That is we constructed data sets that contained both
unassociated and associated variants. The genotypes for the unassociated variants were generated
according to Hardy-Weinberg equilibrium with a minor allele frequency sampled uniformly between
0.2 and 0.4. Each dataset also contained a single interacting pair. The genotypes of the variants
corresponding to the interacting pair were generated according to a minor allele frequency that
for both variants were varied over 0.2, 0.3 and 0.4. We assumed a balanced design, and sampled
individuals until they totaled the desired sample size of 2000, 3000 and 4000 samples each in the
case and control groups. For each combination of model parameters, minor allele frequency and
sample size, 200 replicates containing N = 500 variants were generated. The parameters of the
interaction models, along with resulting penetrances, heritability and marginal heritability can be
found in section Simulation parameters and their interpretation as specific GLMs.

We evaluated the statistical power for our (i) adaptive and (ii) static stage-wise methods and
the following seven additional methods: the (iii) Logistic, (iv) Marginal+logistic, (v) CSS+logistic,
(vi) R2+logistic, (vii) LD-contrast, (viii) Sixpac and (ix) MB-MDR methods. The significance
level was set to 0.05. For the methods without screening (iii and vii), as well as for the Sixpac
method, we corrected for N(N − 1)/2 = 124, 750 pairs. For the remaining screening methods,
we corrected for the number of variant pairs passing the screening. For MB-MDR, a permutation
approach was used to determine adjusted p-values. For the static stage-wise method we corrected
for 124, 750 pairs, 2N = 1, 000 pairs, 1, 000 pairs and 1 pair in each of the 4 stages respectively.
The adaptive stage-wise method determines the multiple correction dynamically.

In the Double dominant model results (S1 Fig), MB-MDR and Sixpac perform relatively better
for low MAF. However, at higher MAFs, the performance of in particular Sixpac deteriorates and
the Adaptive and Static stage-wise methods surpasses the other methods in terms of power. The
Double recessive model (S2 Fig) appears to be challenging. No method performs well at low
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MAF. At intermediate MAF, Sixpac clearly performs best, but as the MAF increases further,
the Adaptive and Static stage-wise methods catch up in performance. For high MAF and large
sample size, most methods perform well. In the XOR model results (S3 Fig), again the MB-
MDR and Sixpac methods performs best at lower MAFs, and again the performance of Sixpac
deteriorates at higher MAF. At higher MAFs, our Adaptive and Static stage-wise methods perform
well, but are surpassed by the CSS+logistic, MB-MDR, and logistic methods. Finally, in the Side
model results (S4 Fig), MB-MDR and Sixpac perform relatively better on low MAFS. At higher
MAFS, the Adaptive and Static stage-wise methods clearly surpasses the other methods, while
the performance of Sixpac deteriorates. For all models, the LD-contrast and R2+logistic methods
have the relatively worst performance. The R2+logistic method has a very strict p-value threshold
at the screening stage that probably contributes to the poor power; a positive effect of this strict
threshold is that the R2+logistic method controls the FWER better than the other methods using
a logit link function (main text table 2).

In summary, the results is consistent with that from the main text analysis (which was based
on data generated from all possible interaction models) with some variation. Our Static stage-wise
method, together with our Adaptive stage-wise method (which was not tested in the main text
analysis), consistently performs among the top, while the LD-contrast and R2+logistic methods
are among the worst. However, we can see that the power of the Sixpac method, which performed
rather mediocre in the main text power analysis, varies for different MAFs; at low MAF, it performs
relatively better than most other methods for all models. However, except for the double recessive
model, its performance clearly becomes worse as MAF increases. MB-MDR also performs relatively
well at low MAF, but, while its performance does not get worse, it takes, together with logistic,
CSS+logistic and often also marginal+logistic, an intermediate position in terms of power. The
exception is the XOR model, where MB-MDR, logistic and CSS+logistic models perform best.

Table S2 text.1: This table describes 4 specific interaction models. The parameter β0 can be
thought of as the population penetrance when not considering genetic effects, β1 is the increase in
penetrance when having the specific genotype. In the dominant model there is an increased risk
when at least one risk allele is present in both loci. In the homozygote model there is an increased
risk when both loci are homozygous for the risk allele. In the XOR model there is an increased risk
with the AABB and aabb. In the side model there is an increased risk for the AABb genotype.

Double dominant Double recessive
Genotype AA Aa aa Genotype AA Aa aa
BB β0 β0 β0 BB β0 β0 β0
Bb β0 β0 + β1 β0 + β1 Bb β0 β0 β0
bb β0 β0 + β1 β0 + β1 bb β0 β0 β0 + β1

XOR Side
Genotype AA Aa aa Genotype AA Aa aa
BB β0 β0 + β1 β0 BB β0 β0 β0
Bb β0 + β1 β0 β0 + β1 Bb β0 + β1 β0 β0
bb β0 β0 + β1 β0 bb β0 β0 β0

Simulation parameters and their interpretation as specific
GLMs

To enhance interpreting our simulated data to specific GLMs, we here provide tables for the
simulated data generated from specific interaction models, described above in section Power for
specific models of interaction, and corresponding figures for the simulated data generated from all
possible interaction model, described in the main text Material and methods section Generation
of synthetic data for estimation of statistical power.
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Specific interaction model simulations

The penetrance matrices used in the simulations are shown in Table S2 text.2. While we have used
the penetrances directly in our simulations, each penetrance matrix can equivalently be expressed
as a GLM with any choice of invertible link function. This is accomplished by considering two
scales as two equivalent parameterizations of the same model, let θ = {pij}i,j∈{0,1,2}2 be the vector
of parameters corresponding to the penetrances and β = {α, β1, β2, γ1, γ2, δ11, δ12, δ21, δ22} be the
vector of parameters corresponding to the regression model. Let P be the 9× 9 matrix that maps
β to the effect level for each genotype, we then have the following relationship between θ and β

θ = g−1(Pβ)

and thus given θ we can express it in terms of β by

β = P−1g(θ)

The corresponding regression coefficients for a GLM with an logit and a identity link function
are shown in Tables S2 text.3 and S2 text.4, respectively. Notice, however, that the size of the
interaction parameters cannot be directly compared between models because their standard errors
depend on the link function.

We remark that apart from the intercept variable (’a’ in the table headers) and the scale,
the relative distributions of regression coefficients are remarkably similar between the equivalent
identity and the logit link function GLMs.

To further investigate the properties of the interaction models from which we generate data, we
compute the heritability, H2, for each model, MAF-combination and effect level, and decompose it
into marginal heritability and “interaction” heritability (Table S2 text.5). For each variant i in the
interacting variant pair, the marginal heritability, H2

i , is computed from the marginal penetrances
in the penetrance matrix. The interaction heritability, H2

12 is then obtained asH2
12 = H2−H2

1−H2
2 .

The parameter determining the effect size, β1, was varied at four different effect levels, determined
individually for each of the four generative models to retain a prevalence approximately in the
interval [0.1, 0.2] and at the same time obtain an interval that captured the performance of the
tested method to infer interaction. We can see that the heritability represented by this interval
varies slightly between models. More interestingly, the heritability fractions (H2

i /H
2 and H2

12/H
2)

and in particular the ratio between interaction and marginal heritabilities (H2
12/(H

2
1 +H2

2 )) shows
that there is a substantial difference in the relative amount of heritability that can be attributed
to interaction. For the Double dominant and Side models, this amount is rather small, the
interaction–marginal heritability ratio lies between 0.28− 0.89, while for the Double recessive and
XOR models, it is much larger, the ratio here lies between 2.6− 312. Interestingly, for the Double
dominant and Double recessive model, the relative interaction heritability decreases with MAF,
while for the XOR and Side models it increases. In summary, we suggest that this indicates that
our choice of specific models captures a reasonable section of the variability of interaction models.

Main text simulations from the spectrum of all possible interaction mod-
els

Tabulation of the penetrance matrices and equivalent GLMs for the large-scale simulation data
generated from all possible interaction models in the main text would be impractical. Instead,
we plot the density distributions, over all generated models, of the regression coefficients from the
logit (S7 Fig) and identity (S8 Fig) link function GLMs that are equivalent to the penetrance
matrices, for each combination of sample size and MAF. In both the logit and the identity figure,
the main and interaction effects are, for the majority of models, concentrated around the same
effect sizes. The cumulative marginal heritability fraction in S9 Fig shows that the models cover
the range from small to large interaction heritability in a fairly even manner. As many, if not most,
interaction models induce a marginal effect, there is a slight bias towards models with a larger
marginal heritability, around 71% of the models have a marginal heritability fraction greater than
50%.
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Table S2 text.2: Penetrance matrices from the simulations using specific interaction models, listing
penetrances pij for each allele combination ij.

Model p00 p01 p02 p10 p11 p12 p20 p21 p22
Double dominant 0.1000 0.1000 0.1000 0.1000 0.1200 0.1200 0.1000 0.1200 0.1200
Double dominant 0.1000 0.1000 0.1000 0.1000 0.1500 0.1500 0.1000 0.1500 0.1500
Double dominant 0.1000 0.1000 0.1000 0.1000 0.1800 0.1800 0.1000 0.1800 0.1800
Double dominant 0.1000 0.1000 0.1000 0.1000 0.2100 0.2100 0.1000 0.2100 0.2100
Double recessive 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.2000
Double recessive 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.2500
Double recessive 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.3000
Double recessive 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.3500
XOR 0.1000 0.1200 0.1000 0.1200 0.1000 0.1200 0.1000 0.1200 0.1000
XOR 0.1000 0.1400 0.1000 0.1400 0.1000 0.1400 0.1000 0.1400 0.1000
XOR 0.1000 0.1600 0.1000 0.1600 0.1000 0.1600 0.1000 0.1600 0.1000
XOR 0.1000 0.1800 0.1000 0.1800 0.1000 0.1800 0.1000 0.1800 0.1000
Side 0.1000 0.1000 0.1000 0.1200 0.1000 0.1000 0.1000 0.1000 0.1000
Side 0.1000 0.1000 0.1000 0.1500 0.1000 0.1000 0.1000 0.1000 0.1000
Side 0.1000 0.1000 0.1000 0.1800 0.1000 0.1000 0.1000 0.1000 0.1000
Side 0.1000 0.1000 0.1000 0.2100 0.1000 0.1000 0.1000 0.1000 0.1000

Table S2 text.3: This table shows the regression coefficients for each parameter combination on
the logit scale.

Model α β1 β2 γ1 γ2 δ11 δ12 δ21 δ22
Double dominant -2.1972 0.0000 0.0000 0.0000 0.0000 0.2048 0.2048 0.2048 0.2048
Double dominant -2.1972 0.0000 0.0000 0.0000 0.0000 0.4626 0.4626 0.4626 0.4626
Double dominant -2.1972 0.0000 0.0000 0.0000 0.0000 0.6809 0.6809 0.6809 0.6809
Double dominant -2.1972 0.0000 0.0000 0.0000 0.0000 0.8723 0.8723 0.8723 0.8723
Double recessive -2.1972 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8109
Double recessive -2.1972 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0986
Double recessive -2.1972 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.3499
Double recessive -2.1972 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.5782
XOR -2.1972 0.2048 0.0000 0.2048 0.0000 -0.4096 0.0000 0.0000 0.0000
XOR -2.1972 0.3819 0.0000 0.3819 0.0000 -0.7639 0.0000 0.0000 0.0000
XOR -2.1972 0.5390 0.0000 0.5390 0.0000 -1.0780 0.0000 0.0000 0.0000
XOR -2.1972 0.6809 0.0000 0.6809 0.0000 -1.3618 0.0000 0.0000 0.0000
Side -2.1972 0.0000 0.0000 0.2048 0.0000 -0.2048 -0.2048 0.0000 0.0000
Side -2.1972 0.0000 0.0000 0.4626 0.0000 -0.4626 -0.4626 0.0000 0.0000
Side -2.1972 0.0000 0.0000 0.6809 0.0000 -0.6809 -0.6809 0.0000 0.0000
Side -2.1972 0.0000 0.0000 0.8723 0.0000 -0.8723 -0.8723 0.0000 0.0000
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Table S2 text.4: This table shows the regression coefficients for each parameter combination on
the penetrance scale.

Model α β1 β2 γ1 γ2 δ11 δ12 δ21 δ22
Double dominant 0.1000 0.0000 0.0000 0.0000 0.0000 0.0200 0.0200 0.0200 0.0200
Double dominant 0.1000 0.0000 0.0000 0.0000 0.0000 0.0500 0.0500 0.0500 0.0500
Double dominant 0.1000 0.0000 0.0000 0.0000 0.0000 0.0800 0.0800 0.0800 0.0800
Double dominant 0.1000 0.0000 0.0000 0.0000 0.0000 0.1100 0.1100 0.1100 0.1100
Double recessive 0.1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1000
Double recessive 0.1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1500
Double recessive 0.1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2000
Double recessive 0.1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2500
XOR 0.1000 0.0200 0.0000 0.0200 0.0000 -0.0400 0.0000 0.0000 0.0000
XOR 0.1000 0.0400 0.0000 0.0400 0.0000 -0.0800 0.0000 0.0000 0.0000
XOR 0.1000 0.0600 0.0000 0.0600 0.0000 -0.1200 0.0000 0.0000 0.0000
XOR 0.1000 0.0800 0.0000 0.0800 0.0000 -0.1600 0.0000 0.0000 0.0000
Side 0.1000 0.0000 0.0000 0.0200 0.0000 -0.0200 -0.0200 0.0000 0.0000
Side 0.1000 0.0000 0.0000 0.0500 0.0000 -0.0500 -0.0500 0.0000 0.0000
Side 0.1000 0.0000 0.0000 0.0800 0.0000 -0.0800 -0.0800 0.0000 0.0000
Side 0.1000 0.0000 0.0000 0.1100 0.0000 -0.1100 -0.1100 0.0000 0.0000

The effect of different weights in the stage-wise analysis

The stage-wise method requires weights to be selected. We performed a simple experiment to
evaluate the impact of the weight selection on statistical power. In this experiment genotypes
were taken from chromosome 20 genotyped on the IBC-chip in the PROCARDIS cohort. We
investigated power for all non-zero weight combinations that summed to 1 with a precision of 0.1.
For each specific weight combination, we generated 1000 random penetrance matrices. For each
penetrance matrix, a random variant pair was selected and the phenotype was then generated
according to the penetrance matrix. The penetrance for each genotype combination was sampled
from the normal distribution N(β0,

√
H2β0(1− β0)) (penetrances were truncated to (0.1, 0.9)),

where H2 is the given heritability (as defined in the main text) and β0 is the population risk. The
H2 was set to 0.02 and β0 to 0.5.

We ran both the static and adaptive method, and computed the statistical power for each
weight combination over the 1000 replicates. The general conclusion of this experiment is that
for these weight combinations there is only a small difference in power, and in this analysis the
weight combination 0.1, 0.3, 0.3 and 0.3 performed best. This weight combination was used in all
other stage-wise analyses in this paper.

Implementation details

For several of the methods an no implementation was available for large-scale analyses on Unix
clusters. Here we describe how these methods were implemented and what assumptions were
made. Let Nij be the observed number of counts for the combination of genotypes i for the first
variant and j for the second variant.

Logistic main test

The logistic main test was implemented as a GLM with a logit link function (described in the
main text section Interaction in the generalized linear model). Of note, we did not assume addi-
tivity. The implementation of the various screening tests is described below. The Holm-Bonferroni
method was used for multiple test correction; when no screening was applied we corrected for all
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Table S2 text.5: Heritabilities and prevalence for simulated data under different minor allele fre-
quencies (MAFs) and effect level. H2 denotes the heritability, H2

1 and H2
2 denotes the marginal

heritabilities, and H2
12 denotes the heritability attributable to interaction.

Model MAF1 MAF2 Effect level H2 H2
1

H2

H2
2

H2

H2
12

H2

H2
12

H2
1+H2

2
Prevalence

Double dominant 0.2000 0.2000 0 0.0005 0.2647 0.2647 0.4706 0.8889 0.1026
Double dominant 0.2000 0.2000 1 0.0030 0.2647 0.2647 0.4706 0.8889 0.1065
Double dominant 0.2000 0.2000 2 0.0074 0.2647 0.2647 0.4706 0.8889 0.1104
Double dominant 0.2000 0.2000 3 0.0135 0.2647 0.2647 0.4706 0.8889 0.1143
Double dominant 0.3000 0.3000 0 0.0008 0.3377 0.3377 0.3245 0.4804 0.1052
Double dominant 0.3000 0.3000 1 0.0048 0.3377 0.3377 0.3245 0.4804 0.1130
Double dominant 0.3000 0.3000 2 0.0116 0.3377 0.3377 0.3245 0.4804 0.1208
Double dominant 0.3000 0.3000 3 0.0208 0.3377 0.3377 0.3245 0.4804 0.1286
Double dominant 0.4000 0.4000 0 0.0010 0.3902 0.3902 0.2195 0.2813 0.1082
Double dominant 0.4000 0.4000 1 0.0057 0.3902 0.3902 0.2195 0.2813 0.1205
Double dominant 0.4000 0.4000 2 0.0134 0.3902 0.3902 0.2195 0.2812 0.1328
Double dominant 0.4000 0.4000 3 0.0236 0.3902 0.3902 0.2195 0.2812 0.1451
Double recessive 0.2000 0.2000 0 0.0002 0.0385 0.0385 0.9231 12.0000 0.1002
Double recessive 0.2000 0.2000 1 0.0004 0.0385 0.0385 0.9231 12.0000 0.1002
Double recessive 0.2000 0.2000 2 0.0007 0.0385 0.0385 0.9231 12.0000 0.1003
Double recessive 0.2000 0.2000 3 0.0011 0.0385 0.0385 0.9231 12.0000 0.1004
Double recessive 0.3000 0.3000 0 0.0009 0.0826 0.0826 0.8349 5.0556 0.1008
Double recessive 0.3000 0.3000 1 0.0020 0.0826 0.0826 0.8349 5.0556 0.1012
Double recessive 0.3000 0.3000 2 0.0035 0.0826 0.0826 0.8349 5.0556 0.1016
Double recessive 0.3000 0.3000 3 0.0055 0.0826 0.0826 0.8349 5.0556 0.1020
Double recessive 0.4000 0.4000 0 0.0027 0.1379 0.1379 0.7241 2.6250 0.1026
Double recessive 0.4000 0.4000 1 0.0060 0.1379 0.1379 0.7241 2.6250 0.1038
Double recessive 0.4000 0.4000 2 0.0106 0.1379 0.1379 0.7241 2.6250 0.1051
Double recessive 0.4000 0.4000 3 0.0164 0.1379 0.1379 0.7241 2.6250 0.1064
XOR 0.2000 0.2000 0 0.0010 0.1147 0.1147 0.7705 3.3580 0.1087
XOR 0.2000 0.2000 1 0.0038 0.1147 0.1147 0.7705 3.3580 0.1174
XOR 0.2000 0.2000 2 0.0080 0.1147 0.1147 0.7705 3.3580 0.1261
XOR 0.2000 0.2000 3 0.0135 0.1147 0.1147 0.7705 3.3580 0.1348
XOR 0.3000 0.3000 0 0.0010 0.0250 0.0250 0.9501 19.0312 0.1097
XOR 0.3000 0.3000 1 0.0038 0.0250 0.0250 0.9501 19.0312 0.1195
XOR 0.3000 0.3000 2 0.0080 0.0250 0.0250 0.9501 19.0313 0.1292
XOR 0.3000 0.3000 3 0.0134 0.0250 0.0250 0.9501 19.0313 0.1390
XOR 0.4000 0.4000 0 0.0010 0.0016 0.0016 0.9968 312.0000 0.1100
XOR 0.4000 0.4000 1 0.0038 0.0016 0.0016 0.9968 312.0000 0.1200
XOR 0.4000 0.4000 2 0.0080 0.0016 0.0016 0.9968 312.0000 0.1300
XOR 0.4000 0.4000 3 0.0133 0.0016 0.0016 0.9968 312.0000 0.1399
Side 0.2000 0.2000 0 0.0007 0.5473 0.1449 0.3078 0.4448 0.1041
Side 0.2000 0.2000 1 0.0042 0.5473 0.1449 0.3078 0.4448 0.1102
Side 0.2000 0.2000 2 0.0101 0.5473 0.1449 0.3078 0.4448 0.1164
Side 0.2000 0.2000 3 0.0183 0.5473 0.1449 0.3078 0.4448 0.1225
Side 0.3000 0.3000 0 0.0007 0.3578 0.2697 0.3725 0.5935 0.1041
Side 0.3000 0.3000 1 0.0042 0.3578 0.2697 0.3725 0.5935 0.1103
Side 0.3000 0.3000 2 0.0102 0.3578 0.2697 0.3725 0.5935 0.1165
Side 0.3000 0.3000 3 0.0184 0.3578 0.2697 0.3725 0.5935 0.1226
Side 0.4000 0.4000 0 0.0006 0.2263 0.3714 0.4023 0.6731 0.1035
Side 0.4000 0.4000 1 0.0037 0.2263 0.3714 0.4023 0.6731 0.1086
Side 0.4000 0.4000 2 0.0091 0.2263 0.3714 0.4023 0.6731 0.1138
Side 0.4000 0.4000 3 0.0165 0.2263 0.3714 0.4023 0.6731 0.1190
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variant pairs tested, while when screening was applied we corrected for expected number of pairs
passing the screening.

Marginal screening

We used a logit-link-function GLM with 3 parameters to test the marginal effect of each variant,
using a 2 degrees of freedom test. We declared all marginal effects with a p-value less than 0.1
significant. For the main test, all possible pairs that contain at least one significant marginal effect
was tested using a logistic regression model using a 4 degrees of freedom test.

CSS screening

Let gi =
∑

j+k=iNij and, for convenience of notation, define g3 = E[g3] = 0. Then the CSS

χ2-statistic of [?] can be written

CSS =

4∑
i=0

gi − E[gi]

E[gi]
.

The expected value E[gi] was estimated using the marginal frequencies,

E[gi] =
∑

j+k=3

N·jNk·

N
.

We did not implement the technique of reducing the degrees of freedom if a marginal effect was
not significant. We used a threshold of CSS ≥ 3 in the first stage as recommended in the paper,
this corresponds to a p-value of 0.39.

R2 screening

The test described in [1] included an erroneous expression for the variance that made the test
overly conservative. In our implementation, we used the expression from [2] amended with an
addition factor N . Let ui and vj be the weights for these genotypes, as defined by [1]. We have
the test statistic

T =
∑
ij

uivjNij ,

its mean under the null model

E[T ] =
∑
ij

uivj
N·jNi·

N
,

and its variance under the null model

V ar[T ] =

(∑
i u

2
iNi· − (

∑
i uiNi·)

2/N
) (∑

j v
2
jN·j − (

∑
j ujN·j)

2/N
)

N
.

The Wald statistic W was then computed by

W =
(T − E[T ])2

V ar[T ]

and compared to a χ2(1) distribution. We assumed an additive model for the weights so that
u = v = (0, 1, 2). We used a significance threshold of 10−4 in the first stage. The second stage
used a 4 degrees of freedom interaction test in a logistic regression model.
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LD-contrast main test

For each subcohort set ∈ {cases, controls}, let p and q be the minor allele frequency of the first
and second variant in the population, respectively, and let p00 be the population frequency of
the haplotype that contains both minor alleles. Let n = |set|, xij be the observed frequency of

genotype in set, and let p̂ =
∑2

i=0 x0i and q̂ =
∑2

i=0 xi0. The difference between the haplotype
frequency and the product of the marginal frequencies D = p00 − pq was estimated in both the
case and control population using

D̂set =
1

2(n− 1)

n∑
i=1

(xi1 − 2p̂)(xi2 − 2q̂)

using the fact that D is twice the covariance between the two variants. The differences were then
compared between cases and controls using the following test

(D̂cases − D̂controls)
2

V ar[D̂cases − D̂controls]

where

V ar[D̂cases−D̂controls] =
p̂cases(1− p̂cases)q̂cases(1− q̂cases)

ncases
+
p̂controls(1− p̂controls)q̂controls(1− q̂controls)

ncontrols
.

We applied Holm-Bonferroni correction for all variant pairs tested.

Sixpac and MB-MDR

For the Sixpac and MB-MDR approaches, we used the Unix-distribution made available by the
authors (http://www.cs.columbia.edu/~snehitp/sixpac/ and http://www.statgen.ulg.ac.

be/software_mbmdr.html, respectively). For Sixpac, we applied Holm-Bonferroni correction for
all variant pairs tested (as recommended by the authors), and for MB-MDR, we used the adjusted
p-values from the program, and specified to perform permutation for the top 10 interaction pairs.
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