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Details of the Mathematical Model

We describe the selection dynamics in the cell system through the following coupled

integro-differential equations:

%nc(t,u) = lac = pe pe(t)nc(t, u) - nc(t,u)/o ne(u, v)ny(t,v)dv, (1)

proliferation and death of target cells

J/

selective action exerted by T cells

%nT(t, v) = [1+ cp(t)|nr(t,v) /0 nr(v, w)ne(t, u)du + Ll + cp(t)] ar ny(t,v)
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homeostatic regulation

In the above equations,

_ (vfu)2

nT(Ua u) = ﬁT g(v, us 7, 9)7 g(v, U3, 9) = G(“) e v, (3>



and

_ (u,f'u)2
0

ne(u,v) = Be g(u,v;7,0), g(u,v;7,0) :=vG(v) e

where G(-) > 0 is a normalisation function.

Details of the Numerical Results

Numerical simulations are performed in MATLAB making use of an implicit-explicit finite
difference scheme [2] with 600 points on the interval [0, 1]. For all simulations, we set the

time step dt = 0.1.

For T cells, we choose the initial condition

ni(v) :==C; Vovel01], Cy > 0. (5)

For target cells, we make use of the following initial condition

2

ng(u) = Cg 6_0-16ﬁ, CQ > 0. (6)

Figure 3(A): Plots of pr(t) (solid line) and pc(t) (dashed line) for ¢t € [0;¢;] with
t; := 40. Simulations are performed with cg(t) = cp(t) = cp(t) := 0 for all ¢ € [0;tf],

v:=2.5and # := 0.1. The other parameters are defined as in Table 1.



Figure 3(B): Plots of pp(t) (solid line) and pc(t) (dashed line) for ¢ € [0;¢f] with
t; = 40. Simulations are performed with cg(t) = cp(t) = e (t) := 0 for all ¢t € [0;t4],

v := 0.4 and € := 0.1. The other parameters are defined as in Table 1.

Figure 3(C): Plots of pr(t) (solid line) and pc(t) (dashed line) for ¢ € [0;tf] with
t; := 40. Simulations are performed with cg(t) = cp(t) = cp(t) := 0 for all ¢ € [0;tf],

v :=0.018 and 0 := 0.001. The other parameters are defined as in Table 1.

Figure 4: Plots of ny(t,v) (black) and nc(t,u) (grey) at time instants ¢ = 130 (bot-
tom panel), t = 400 (central panel) ¢ = 1000 (top panel). Simulations are performed with
ci(t) = cp(t) = cpm(t) :=0forallt € [0;¢4], v := 0.1 and # := 0.01. The other parameters

are defined as in Table 1.

Figure 5(A): Plots of fo 7(t,v) dv (solid line) and fo (t,u) du (dashed line)
for ¢t € [0;t] with ¢; := 40. Simulations are performed with v := 2.5, § := 0.1 and
cg(t) = cp(t) = cpm(t) := 0 for all t € [0;¢f]. The other parameters are defined as in Table

1.

Figure 5(B): Plots of fo 7(t,v) dv (solid line) and fo nc(t,u) du (dashed line)
for t € [0;¢;] with ¢; := 40. Simulations are performed with v := 2.5,  := 0.1, cg(t) :==4

and cp(t) = cp(t) == 0 for all t € [0;¢¢]. The other parameters are defined as in Table 1.

Figure 5(C): Plots of fo r(t,v) dv (solid line) and fo ne(t,u) du (dashed line)
for t € [0;tf] with ¢y := 40. Simulations are performed with v := 2.5, § := 0.1, cp(t) :=4

and cg(t) = cp(t) :== 0 for all t € [0;t7]. The other parameters are defined as in Table 1.



Figure 5(D): Plots of fo T nr(t,v) dv (solid line) and fo ot ,u) du (dashed line)
for t € [0;¢;] with ¢; := 40. Simulations are performed with v := 2.5, 6 := 0.1, ¢ (t) := 4

and cp(t) = cp(t) := 0 for all t € [0;¢7]. The other parameters are defined as in Table 1.

Figure 6: Plots of - fo pr(t) dt (panel (A)) and + fo pc(t) dt (panel (B)), with
tr =360, v := 1 and 6 := 0.001, for increasing values of x(t;). Simulations are performed
with: ¢p(t) = cp(t) := 0 and cg(t) ;= ¢ for all t € (0;¢5) (green line); cp(t) = cp(t) =0
and cp(t) := c for all t € (0;tf) (red line); cp(t) = cp(t) := 0 and cp(t) := ¢ for all
t € (0;t5) (blue line); cp(t) = cp(t) :=¢/2 and cp(t) := 0 for all t € (0;¢5) (yellow line);
ce(t) = cm(t) :== ¢/2 and cp(t) := 0 for all t € (0;t) (cyan line); cp(t) = cp(t) = ¢/2
and cg(t) :== 0 for all t € (0;¢;) (pink line); cg(t) = cp(t) = cp(t) :=c¢/3 for all t € (0;y)
(orange line). Different lines correspond to different values of the parameter ¢, which is

tuned over the set [0;48]. In all cases, the other parameters are defined as in Table 1.

Figure S1(A)—(B): Plots of 1/t; [,” pr(t) dt (Panel (A)) and 1/t; [,* po(t) dt (Panel
(B)), with t; := 360, v := 1 and # := 0.001, for increasing values of x(ty). Simulations are
performed with: cg(t) := c sign (cos (27t/15)), and cp(t) = cp(t) := 0 for all ¢ € (0;ty)
(green line); cp(t) = ca(t) := 0 for all ¢ € (0;t;) and cp(t) := c sign (cos (27t/15)), (red
line); car(t) := csign (cos (2mt/15)), and cp(t) = cp(t) := 0 for all ¢ € (0;t;) (blue line);
cy(t) := 0 for all £ € (0;t7) and cg(t) = cp(t) := ¢/2 sign (cos (27t/15)), (yellow line);
cp(t) = cu(t) := ¢/2 sign (cos (2nt/15)) . and cp(t) := 0 for all £ € (0;t5) (cyan line);

cp(t) =0 for all t € (0;t5) and cp(t) = ca(t) := ¢/2 sign (cos (27t /15)) . (pink line);

cp(t) = cp(t) = ey (t) := ¢/3 sign (cos (27t /15)), (orange line). Different lines correspond

to different values of the parameter ¢, which is tuned over the set [0;120]. In all cases,



the other parameters are defined as in Table 1.

Figure S1(C)—(D): Plots of 1/t [ pr(t) dt (Panel (C)) and 1/t; [/ po(t) dt (Panel
(D)), with ¢ := 360, v := 1 and 6 := 0.001, for increasing values of x(t;). Simulations are
performed with: cp(t) = cp(t) := 0 for all ¢ € (0;tf) and cg(t) := csign (cos (27t/7))
(green line); cp(t) := csign (cos (27t/7)), and cp(t) = cp(t) := 0 for all ¢ € (0;t5) (red
line); cx(t) = cp(t) := 0 for all t € (0;tf) and cpr(t) := c sign (cos (27t/7)),, (blue line);
cy(t) := 0 for all t € (0;tf) and cg(t) = cp(t) := ¢/2 sign (cos (27t /7)), (yellow line);
cp(t) = cu(t) := ¢/2 sign (cos (27t /7)), and cp(t) := 0 for all ¢ € (0;t5) (cyan line);
cp(t) :=0for all t € (0;t5) and cp(t) = car(t) := ¢/2 sign (cos (27t/7)), (pink line);
cp(t) = cp(t) = cu(t) := ¢/3 sign (cos (27t /7)) (orange line). Different lines correspond
to different values of the parameter ¢, which is tuned over the set [0;120]. In all cases,

the other parameters are defined as in Table 1.
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Figure S1. The most effective immunotherapy protocols rely on the simultaneous
infusion of P-agents and M-agents. Panels (A)—(D): time-average of the global
population density of T cells — Panels (A) and (C) — and target cells — Panels (B) and
(D) — for increasing total doses of therapeutic agents  (in units of 10 pg/ul). Different
colours correspond to different therapeutic protocols that rely on the periodic infusion of
E-agents/P-agents/M-agents separately and in combination (i.e., different values of kg,
kp and k). Panels (A)—(B) and Panels (C)—(D) refer, respectively, to lower and higher
infusion frequency. Panel (E): illustration of the protocols in use during the in silico
experiments of Panels (A)—(D). Colours correspond to the plots shown in Panels
(A)—-(D). All therapeutic protocols under consideration lead to an increase in the
time-average of the total number of T cells and a reduction in the time-average of the
total number of target cells. However, when the infusion rates of therapeutic agents are
sufficiently high, the protocols relying on the simultaneous infusion of sufficiently high
concentrations of P-agents and M-agents lead to a larger population of T cells and to a
significantly smaller population of target cells.



Analysis of the Mathematical Model

In order to verify the robustness of the conclusion presented in the main text — i.e., the
idea that protocols relying on the simultaneous infusion of P-agents and M-agents lead
to a larger population of T cells — with respect to the choice of the model parameters,
we perform a qualitative analysis of the global population density of T cells under the

therapeutic protocols presented in Fig. 6(C). To this end, we define the sets

and

Furthermore, we define

inf u,v;7v,0) =g >0,
(uyv)€[0;1}2g< 16 =g

and we introduce the notation pr(t) |. to indicate the integral of the solution of equa-
tion (2) at the time ¢ in the case where cg(t), cp(t) and cp(t) are defined, respectively,

as the first, second and third component of the vector c(t), that is,

c(t) := (ce(t), cm(t), cp(t)).

In the framework of the above definitions and notations, we can prove the following

Lemma 1.1 Let

c(t):=c=(cg,cm,cp) €CLUC,UCs  for allt >0, (7)



and assume

1
0<pe(t =0 2 and 0< pu(t=0) < [Br(1+erdpot = 0)+ar (1+ep)] L2,
‘ T

(8)

Then, the following a priori estimates hold:

o o 1+c
0< pc(t) S —C and 0 < pT(t) S [BT(l + CE)—C + CYT(l + Cp)] M, (9)
e He Hr
for all t > 0. Furthermore, there exists 0 < t* < oo such that
o
pr(t) > —=(1+cp)(1 + cn) for any t > t". (10)

Hr

Proof 1.1 The non-negativity of the functions nc and ny can be proved in a similar
way as that presented, for instance, in [1]; therefore, we leave the first and second lower
bounds of (9) without proof. On the other hand, to prove the first upper bound of (9),
we integrate equation (1) over the set [0;1], and we use definition (3) together with the

non-negativity of the functions nc and nr to obtain

d

Eﬂc(t) < (ac = pe pe(t)) pe(t).

Under the first assumptions of (8), the above differential inequality implies the first upper
bound of (9). In order to prove the second upper bound of (9), we integrate equation (2)

over the set [0; 1], and we make use of definition (4) and the non-negativity of the functions
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ng and nr to achieve

%,;T(t) < (I+cp) Br pc(t) pr(t)
+ (14cp) ar pr(t)
-5 T;M pr(t) pr(t). (11)

Under the second assumptions of (8), the above differential inequality together with the
first upper bound of (9) imply the second upper bound of (9). In the same way, we can

see that

d

(1) = (14 cp) oz pr(t) -

Hr
t t);
e prl) pr()

that way we achieve the lower bound (10) and then conclude the proof.
Lemma 1.1 allows us to prove the following:

Theorem 1.2 Let the assumptions of Lemma 1 hold. Then, there exist a threshold value
of the infusion rate K < oo, and a threshold value of the exposure time T < oo such that,
ifc> K,

argmax pr(t) |c = <O, E, E) forallt > 7. (12)
ceC1UC2UCs 2 2

Proof 1.2 We begin by defining the function

Br

ar

A(t) = po(t)

and we show that, for c sufficiently large, there ezists 0 < t, < oo such that \(t) < 0.5 for

all t > t,. In fact, equation (2) implies that

d

EPT(t) > [BT g (14 cg)pc(t) + ar(l +cp) —

T
t t
2 pr(t)] pr (),
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and so there exists 0 < t, < oo such that

P (1t ) (1t eanpe(®) + 21+ ep) (1+ ear)

pr(t) =
Hr HT

for allt > t,. In turn, using the above inequality in equation (1), we obtain

—PC [Oéc — pepce(t)|po(t)
~|eg - () (1 eapelt) pe(®)
—Bcyg (1 +cp) (14 cm)pc(t),

which implies
ac — Be g ar/pr (1+cp) (1+cum)

poll) < Lo + Be 22 Br/ur (14 cg) (1+cur)’

for any t > t.. Under assumption (7), the above inequality allows us to conclude that

there ezists 0 < ¢, < 0o such that if ¢ > ¢, then A(t) < 0.5 for all t > t..

Moreover, under assumption (7), the differential inequality (11) implies the following

inequalities:
a
pr(t) le=(c,0,0)< ,U_; [1 + )\(t)(l + c)} (E-agent only), (13)
«
pr(t) le=(0,6,0)< M_; [1 + )\(t)] (1 + c) (M-agent only), (14)
a
pr(t) le=(0,0,0)< ,u_; [(1 + c) + )x(t)] (P-agent only), (15)

p1(t) le=(c/2,¢/2,0)< % [(1 + g) + (1) (1 + g)Q] (E- & M-agents), (16)

pr(®) lesepoerm= S| (145) #AO(145)] (8- € Pagents). (1)
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o c\ 2 c\ 2
P1(t) le=(c/3,/3,c/3) < L [(1 + —> + A(t)<1 + —> } (E-, M- & P-agents),  (18)
Hr 3 3

for allt > 0. On the other hand, the lower bound (10) implies that, for any t > t*,
« c\2
o) leoerrern> 57 (14 3) (M- & P-agents).  (19)
T

Since A(t) < 0.5 for any t > t., we can conclude that there exists 0 < ¢* < 0o such that the
right hand side of inequality (19) is larger than the right hand sides of inequalities (13)-
(18) for all t > t.. A graphical representation of this result is provided in Fig. S2. This
figure shows the ratio between the right hand side of inequality (19) and the right hand
sides of each one of the siz inequalities (13)-(18) for different values of A and c.

In conclusion, defining T := max(t,,t*) and K := max(c,, c¢*), we obtain identity (12).
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Figure S2. Graphical representation of the result established by Theorem 1.2.
Ratio between the right hand side of inequality (19) and the right hand sides of
inequalities (13)-(18), according to the values of A and ¢. The white regions indicate the
range of values of A and ¢ where the right hand side of inequality (19) is larger than the
right hand side of one of the six inequalities (13)-(18) (indicated by the heading of the
panel).



