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ABSTRACT Protein docking protocols are used for the
prediction of both small molecule binding to DNA and protein
macromolecules and of complexes between macromolecules.
These protocols are becoming increasingly automated and
powerful tools for computer-aided drug design. We review the
basic methodologies and strategies used for analyzing molec-
ular recognition by computer docking algorithms and discuss
recent experiments in which (i) substrate and substrate ana-
logues are docked to the active site of isocitrate dehydrogenase
and (i) maltose binding protein is docked to the extracellular
domain of the receptor, which signals maltose chemotaxis.

Why Protein Docking?

The terms ‘‘rational drug design” and ‘‘computer-aided drug
design’’ refer in their most specific sense to the systematic
exploration of the three-dimensional structure of a macromol-
ecule of pharmacological importance, in order to design poten-
tial ligands that might bind to the target with high affinity and
specificity. This goal is largely carried out through docking
protocols, which quantitate the affinity between the macromol-
ecule and a ligand bound in specific locations and conforma-
tions. This discipline is currently used to examine molecular
recognition with some success for the following purposes:

(i) The screening of a large number of small molecule
species for binding activity against a single target molecule
(1-4). A number of data bases of small molecule structures
currently exists for such docking searches, including the
Cambridge Structural Database (5), the Fine Chemicals Di-
rectory by Molecular Design Limited (4), and the Chemical
Abstracts registry.

(ii) Detailed statistical and energetic analyses of an indi-
vidual small molecule and its binding interactions to a specific
macromolecular site (6-8). Such an analysis often begins
where the initial computational screening of many candidates
ends, allowing us to quantitate the binding of individual
compounds and to design and test closely related molecules
that exploit the architecture and specificity of the protein
binding site. Computational paradigms are usually needed,
which use more robust conformational searches and energy
calculations than those used for rapid screening of large data
bases. For this paper we discuss substrate analogue binding
studies pursued through a combination of computational
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techniques and actual enzymatic analysis, using isocitrate
dehydrogenase (IDH) as a model system.

(iii) The determination of the structure of protein—protein
complexes (9-12). This is one of the most important emerging
problems in structural biochemistry, due to the rapidly in-
creasing number of structures being solved and the even
more rapidly increasing number of gene products being
identified, characterized, and sequenced that recognize and
associate with one another. It is also one of the most difficult
problems, due to the challenge of performing actual structural
analyses of large multiprotein complexes and of computa-
tionally modeling structures with such a large degree of
topographical and thermodynamic complexity. We discuss in
this paper recent results from computationally predicting the
protein—protein interactions between the tar protein, which
has been shown to be a membrane-bound receptor that
mediates both aspartate and maltose chemotaxis, and the
maltose binding protein (MBP; which binds to the
receptor).

Modeling and Simplifying the System

To determine and characterize molecular recognition and
binding by a large macromolecule, simplified computational
strategies currently must be followed in order to keep the
calculations within reason. The simplifications that are used
are severalfold.

(i) Rigid body docking searches. The number of possible
conformational isomers of a macromolecule of even limited
size is so large that the target molecule is usually treated
initially as a collection of unmoving atoms (7, 10). In addition,
for most data base-screening algorithms, the small molecule
probe structures are also held rigid (a compromise that
reduces the success rate of identifying potential drugs by an
unknown amount). During the refinement of the low-energy
docking solutions, some macromolecular dynamic motion is
sometimes allowed in the region of the docked complex. The
methods that use rigid atoms reduce the computational
demand of docking searches but can be misleading since
virtually all substrates and other ligands to macromolecular
surfaces induce conformational changes upon binding. Agard
and coworkers (13, 14) have shown that modeling algorithms
that make use of multiple side-chain rotamers provide an
energy calculation that is powerful in predicting conforma-
tional variation in the active site. Such calculations should
allow the design and manipulation of engineered enzyme—

Abbreviations: IDH, isocitrate dehydrogenase; MBP, maltose bind-
ing protein.
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ligand complexes through empirical energy evaluations (13,
14).

(ii) Reduction of macromolecular structural information.
The size of the target macromolecule in a docking simulation
can range from several hundred atoms for short lengths of
nucleic acid sequence (15) to 2000-3000 for the full oligomeric
structure of a small ligand-binding domain of a membrane-
bound receptor (12) and up to 6000-10,000 for an enzymatic
catalyst such as human immunodeficiency virus protease and
thymidylate synthase (4) or isocitrate dehydrogenase. Strat-
egies for reducing this massive amount of data include
representing individual protein residues or side chains and
ligand atoms by space-filling spheres possessing various
charge or polar characteristics (9, 10) or representing the
clefts and binding pockets across the macromolecular sur-
faces with sets of filling spheres (4, 16), a process that is
analogous to making a wax mold of a keyhole, and then
comparing the mold with known molecules. Both of these
strategies have lead to docking protocols that operate in
response to complementarity between the surface structures
of protein and ligand. In the first case, the energy of non-
bonded contact between two molecules is calculated directly;
and in the second case, the physical match and superimpo-
sition of three-dimensional models of the ligands and the
corresponding binding clefts in the protein surface are cal-
culated. Alternatively, a macromolecular structure may be
reduced to a series of three-dimensional grids of molecular
affinity potentials, which correspond to specific atom types
in the docked ligand probe (6, 7), allowing rapid energy
evaluation during docking simulations while maintaining
large search space and a relatively robust energy calcula-
tions, including terms that take into account non-
bonding, electrostatic, and possible hydrogen-bonding
interactions.

(iii) Reduction of available search area. Given the com-
plexity and sheer size of a macromolecular surface, it is
desirable to restrict the possible area of complex formation
for at least one of the two species, provided that such a
simplification is based on data that does not undermine the
probability of obtaining a correct bound solution. This strat-
egy has been used with success in deriving protein—protein
complex structures involving antibodies, for which the vari-
able recombination sites may be used in place of the full
protein structure (10), enzymes, for which the active site is
used (4, 7), and macromolecular structures, for which genetic
information related to the binding event allows selection of
specific surfaces or peptide sequences to use as a set of probe
ligands (12). This final strategy has been used to predict the
structure of a receptor—protein complex, with a comparison
between the individual docked peptides and the same se-
quences in the actual protein structure used to help distin-
guish correct from incorrect docked solutions.

(iv) Energy calculations and evaluation. Unlike a
number of manual docking methods, which explore a limited
subset of bound positions and conformations by sophisti-
cated energy evaluation methods, most automated docking
protocols require the use of simplified energetic models to
keep the computational demands within reason. Therefore,
most methods combine a simplified model of the surfaces to
be docked (as described above) with a straightforward
method of quantitating bound energies. For example, a
crude measurement of the complementarity of surface con-
tours and/or charges is followed by a minimization of the
calculated binding energy by using a variety of proto-
cols,* including ‘‘Metropolis,”’ or simulated annealing min-

*During a Metropolis, or simulated annealing minimization, the
temperature (or energy) of the system during the ensuing minimi-
zation is slowly decreased from a starting high value while allowing
the model to vary in a random manner, and the probability of
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imization (17), or a least-squares minimization (18), which
usually finds the closest local energy minima for each docked
solution.

The energy assessment strategies can be divided roughly
into three groups, all of which have been used with a large
amount of overlap in the computational docking applications
reported by a number of investigators.

Strategy 1. geometric analysis, in which the calculated
docking affinity is proportional to interface complementarity,
total buried surface area, and/or van der Waals contact
potentials (4, 9, 10, 16). The usual term to be minimized in
docking protocols that model the spatial complementarity of
the ligand and the protein surface is the Lennard-Jones
potential, or nonbonded van der Waals contact potential:

E=A/d" - B/d"™, (1]

where d is proportional to the distance between nonbonded
residues, A and B are scale factors, and » and m are
exponential terms that influence the distance-dependent de-
gree of attractive and repulsive energies between spheres and
therefore the maximum and minimum nonbonded contact
distances influenced and allowed by van der Waals forces,
respectively. In addition, some geometric docking protocols
have also attempted to model energies of desolvation upon
complex formation (9).

Some protocols such as the program pock (4, 16) attempt
to optimize the physical similarity of the docked ligand and
available macromolecular binding sites by representing the
cleft as a group of overlapping spheres and then searching for
molecules that are capable of forming a close three-
dimensional match to those spheres. This method generally
offers fast computational run times and allows the incorpo-
ration of electrostatic and hydrogen bonding terms and
minimization methods as needed.

Strategy 2: electrostatic analysis, in which the calculated
docked affinity is primarily related to the sum of electrostatic
interaction energies. Methods that attempt to align and
optimize the partial charges of the ligand and protein atoms
have existed for as long as the previously discussed geome-
try-driven methods. Salemme (19) predicted the structure for
a complex of the intermolecular electron-transfer cy-
tochromes c and bs by optimizing the complementary charge
and steric interactions between the two molecules by using a
least-squares optimization and manual fitting procedure.
More recently, Warwicker (20) examined the interface struc-
ture of several complexes, including trypsin-bovine pancreas
trypsin inhibitor, anti-lysozyme Fab-lysozyme, and cy-
tochrome c-cytochrome ¢ peroxidase; he found highly fa-
vorable interacting regions in the interface as determined
from reduced charge contour maps of the protein surfaces.
Finally, Shoichet and Kuntz (11) have found that evaluation
of total interaction energy and electrostatic interaction en-
ergy of protein complexes is somewhat more successful at
discriminating between correct and incorrect docked solu-

accepting a step of higher energy than the previous step is given by
P (AE) = exp (AE/kBT), where kB is Boltzmann’s constant and AE
is the difference in energy from one step to the next. Thus high initial
energies in the system will accept most random steps, allowing the
substrate molecule to sample all energetic bound states; as the
temperature decreases, the probability of accepting a high energy
step diminishes and a global energy minimum is eventually reached.
A least-squares minimization is a straightforward protocol for the
minimization of a structural parameter, such as the agreement
between calculated and observed diffraction terms or the superpo-
sition of a ligand structure onto a space-filled model of a binding site;
such a method often uses a conjugant gradient calculation and
sparse matrix sampling protocol to assess the agreement between
observed and calculated parameters during minimization and is an
efficient method for sampling local minima surrounding an initial
structural model.
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tions (as determined from crystallographic analysis) than
methods that rely on surface burial, solvation free energy,
packing, and mechanism-based filtering. This advantage may
be most marked in the analysis of protein-protein complexes,
due to the larger surface areas involved, which may hinder
geometry-dependent methods.

Strategy 3: molecular affinity analysis, in which the total
interaction energy is related to the sum of interactions of
specific atomic probe groups with target protein groups, as
calculated through a summation of independent energy terms
for Lennard-Jones, electrostatic, and hydrogen bond inter-
actions. This method attempts to combine the best features
of the steric- and electrostatic-dependent docking protocols
described above, while also reducing the surface of the target
protein to a series of atom-dependent ‘‘affinity grids’’ (6).
These grids are calculated over a preselected volume and
surface area of the protein in such a manner as to assign a
potential affinity of the protein for each atom type in the
ligand molecule at periodic points throughout the protein’s
three-dimensional structure. This algorithm, as shown in
Egs. 2 and 3, thus places weight on both the steric fit of ligand
and protein surface and on the chemical properties of indi-
vidual atoms through the calculation of electrostatic poten-
tials in the model (ion pairs, partial charge dipoles, and
hydrogen bonds). T

Exyz = EElj + zEelec + thb 21
=2(4/d" - B/d%)
+ 2(pa/Ky[1/d((y — &)/(y + £))/(d? + 4s,54)]
+ 2[C/dS — D/d*]cos™8 (3]

Goodsell and Olson (7) have linked the molecular affinity
analysis algorithm with the Metropolis technique (17) of
conformational searching to obtain an efficient procedure for
docking small ligands to macromolecules. Tests using a
number of crystallographically well-categorized systems,
including phosphocholine/McPC-603 (an antibody), chymo-
trypsin/N-formyl-tryptophan, and lysozyme/N-acetylglu-
cosamine yield lowest energy solutions with rms deviation
from the crystallographic coordinates for bound substrate
ranging from 0.94 A to 4.01 A. Recently we have used
the technique successfully to model widely different prob-
lems, enzyme-substrate and protein-protein interactions.

IDH—a Difficult-to-Dock Active Site

IDH from Escherichia coli [isocitrate:NADP* oxidoreduc-
tase (decarboxylating), E.C. 1.1.1.42] catalyzes the conver-
sion of isocitrate to a-ketoglutarate and CO,. The enzyme is
dependent on NADP and on bound metal (usually Mg2+) and
lies at an important branch point in carbohydrate metabolism.
The enzyme is completely inactivated by phosphorylation of
an active site serine residue, which controls net flow of
metabolites between the Krebs cycle and the glyoxylate

TTerms for the potentials described in the molecular affinity analysis
protocol: xyz, lj, elec, and hb denote the total interaction potential,
and the Lennard-Jones, electrostatic, and hydrogen-bond poten-
tials, respectively; A and B are atom-specific weighting terms
reflecting the repulsive and attractive nonbonded contact poten-
tials; p and q are electrostatic charges on paired atoms from ligand
and protein; d is the distance between those atoms; K is a combi-
nation of geometrical factors and constraints on electrostatic fields;
v and ¢ are constants reflecting the distance dependence of elec-
trostatic potentials on the dielectric nature of the environment; C
and D are geometric and distance-dependent constants for hydro-
gen-bond potentials; 6 is the bond angle between donor, proton, and
acceptor; and m is a scale factor related to the hydrogen bond angle.
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bypass. This form of metabolic regulation is critical for the
survival of E. coli on nutrients such as acetate.

The structure of IDH has previously been solved at 2.5 A
resolution as apoenzyme, as phosphorylated apoenzyme, as
a binary complex of isocitrate and Mg?*, and as a complex
with NADP in the absence of substrate and metal (21-24).
The enzyme is a dimer of 416 residues per subunit and
contains a single catalytic metal per monomer, which is
tightly chelated by two conserved aspartate residues and by
bound isocitrate. The substrate molecule is bound in the
active site primarily through interactions between its free
carboxylate groups and several conserved basic residues.
Modeling of the binary complex of isocitrate and Mg2* in the
active site indicates that phosphorylation of Ser-113 prevents
substrate binding through direct electrostatic interactions
between the phosphate oxygens and the y-carboxylate of
isocitrate (22).

Isocitrate is bound in the active site through a collection of
electrostatic interactions between its three carboxyl groups
and single hydroxyl group and a large number of conserved
electophilic groups (Fig. 1), including Arg-119, Arg-129, Arg-
153, Ser-113, Lys-230, Asn-115, and Mg2*. The Ky, is 10 uM.
In the original structural solution of the isocitrate~Mg2* binary
complex bound in the active site, modeling of the bound
substrate was difficult to accomplish due to the relatively
symmetric structure of the negatively charged isocitrate (only
the hydroxyl breaks the symmetry) and of the binding site itself
(22). It was necessary to solve the structure of the complex in
the presence of Mg2* and then Mn2* (in a separate experi-
ment) in order to calculate difference maps that locate the
bound metal ion and thereby properly orient the isocitrate
molecule. This was due to the featureless, uniform appearance
of the electron density in substrate/metal difference maps and
because it is possible to orient isocitrate in the binding pocket
in more than one orientation and still create reasonable con-
tacts with the surrounding protein.

FiG. 1. Complex of isocitrate in the active site of IDH, with
residues involved in substrate binding (22). The substrate molecule
is bound in the active site through interactions between its 3-carboxyl
and 1-hydroxyl group and various conserved polar groups as shown.
The labile carboxyl of isocitrate, which is eliminated through a
putative endiolate-intermediate mechanism (shown below) to gen-
erate a-ketoglutarate and CO,, is hydrogen bonded to Lys-230’ and
Tyr-160’'. The terminal y-carboxylate (which is missing in D-malate)
is shown as darkly shaded spheres hydrogen-bonded to Ser-113.
Carbons are shown as white spheres, and oxygens are shown as
lightly shaded spheres relative to y-carboxylate.
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Table 1. Docked solutions and energies of substrates with IDH
and agonists of the MBP-receptor complex
Protein Re-
target Ligand Energy* dundancy' rms¥
IDH Isocitrate -92 lof 5 1.95
-89 lof5 3.02
-87 lof5 3.67
-82 lof5 4.38
-81 lof5 4.40
Malate -36 30of3 1.80
Methyl
malate 22 30f3 1.93
Ethyl
malate 126 30f3 1.72
Aspartate
receptor Aspartate —48 6 of 10 0.96
MBP
peptide 1 2411 3of5 0.79
MBP
peptide 2 -15 40f5 2.10

*Calculated energy in kcal/mol.

fNumber of runs yielding the docked solution vs. total number of
independent docking runs. For example, isocitrate was docked five
times, to give five separate, closely related solutions of different
energies; the lowest energy solution has the closest agreement with
the crystallographic solution of the isocitrate complex. Malate,
methyl malate, and ethyl malate were docked three times, beginning
with the compound in the same orientation as the previously solved
structure of isocitrate.

#The rms for isocitrate and aspartate in A is calculated against
previously solved crystallographic complexes. The rms for malate
and its derivatives is against the equivalent atoms in the crystallo-
graphic structure of the isocitrate-IDH complex. The rms for
peptides from MBP is compared to the same atoms in the crystal
structure of MBP after superposition of peptide 2 over residues
340-348.

Not surprisingly, computational docking of isocitrate and
of related molecules to the IDH active site provides a
challenge in terms of the specificity of the protocol used and
the ability of the energy evaluation to distinguish between
correct and incorrect orientations of bound substrate. In an
initial experiment, the molecular affinity-based protocol (7)
was used to determine the precision of calculated docking to
IDH, by comparing the predicted binding of isocitrate and
malate with the crystallographically solved structure of the
enzyme bound with isocitrate—-Mg2* (22) and with the binding
constants determined through initial-slope kinetic studies.
Partial charges were assigned to each atom in the enzyme
structure by using the molecular modeling program QUANTA,
and we then calculated three-dimensional grids of molecular
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affinity potentials, which encase a preselected region of the
protein surface and interior volume. The grids were 15 A on
each side, sectioned every 0.5 A, and centered on the
crystallographically identified binding site. The metal ion was
included in the enzyme structure, but with no explicitly
modeled solvent or bound ligands in the active site. For
isocitrate, all five possible torsion bonds were allowed to
rotate freely. The individual carboxyl groups on the substrate
were restrained from contacting one another in order to avoid
cyclization in the conformational search algorithm. The ini-
tial energy of the system was 100 kcal/mol, and 300 cycles of
simulated annealing minimization were performed, reducing
the energy by 1% each cycle. A maximum of 20,000 rejected
or accepted steps were allowed in each cycle.

Docking of isocitrate, using multiple runs with random
initial starting orientations, produces multiple docked con-
formations, which all overlap one another, but offer different
combinations of interactions between the carboxyl groups of
the docked substrate and the enzyme active site (Table 1).
The calculated bound energies range from —92 kcal/mol to
—82 kcal/mol. The absolute values of these energies are not
accurate, as they are dependent on the environmental and
charge parameters used to set up the simulation. However,
the lowest energy solution, with a difference of about 3% in
calculated interaction energy from the next lowest energy
solution, is the one most closely matching the crystallo-
graphic structure of bound isocitrate (with the metal chelated
by the C1 carboxyl and the hydroxyl group of isocitrate and
the y-carboxyl interacting with Ser-113; Fig. 2). Thus the
structure that agrees with the crystal structure was the one
calculated to have the lowest binding energy, but the differ-
ence with the next lowest energy structure would make the
choice marginal in the absence of supporting evidence.

Perhaps even more interesting are the results from docking
experiments in which analogues of isocitrate, with various
chemical substitutions at their y-carboxyl group, are com-
putationally docked to the active site. Removal of the car-
boxyl group altogether, to produce the molecule p-malate,
produces a less favorable calculated energy of binding of —36
kcal/mol. The ratio of the computationally derived binding
energy for isocitrate to that for malate is in close agreement
with the actual ratio, which can be determined from the
experimental Michaelis binding constants for the two mole-
cules (A. Dean, A. Shiau, and D.E.K., unpublished results),
implying that the energy evaluation algorithm copes well with
the simple loss of attractive van der Waals potential and the
formation of a “‘hole’’ in the binding site, which occurs when
a wild-type carboxyl group is removed.

Docking of methyl, ethyl, and propyl malate produces far
less accurate results when the molecules are initially placed

)Mzz
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FiG. 2. Stereoview of isocitrate bound in the active site of IDH. The crystallographic structure of the complex is shown as thin bonds, and
the best computationally docked solution of isocitrate is superimposed and shown as the molecule with thick bonds. The actual orientation of
isocitrate, with the metal complexed to the C1 carboxylate and the hydroxy! group, is reproduced by the docking protocol. In the next best
docking solution, the substrate is rotated about the vertical axis by almost 180°, with the metal chelated by the y-carboxyl.



1150 Colloquium Paper: Stoddard and Koshland

in the isocitrate binding orientation and then subjected to a
simulated annealing docking experiment as described above.
The calculated binding energies after docking and conforma-
tional minimization increase sequentially as methyl groups
are added to the end of the small molecule. In this case, steric
clash between the substrate analogue and the enzyme active
site residues prohibits an effective search for a global mini-
mum. Starting from random orientations of the substrate
analogues produces some lowering of these energies, but
produces final orientations that do not agree with the crys-
tallographic or computational structure of the isocitrate com-
plex and that are probably not actually formed during catal-
ysis. Kinetic studies show that in actuality these substituted
malate compounds are substrates for the enzyme and bind
more tightly than malate itself (A. Dean, A. Shiau, and
D.E.K., unpublished results) and only about 10 times worse
than isocitrate, with a Vyax reduced by 2-3 orders of mag-
nitude. In other words, during real turnover, the enzyme has
the flexibility necessary to accommodate a moderately large
number of extra atoms (methyl groups) on the substrate and
still allow effective binding and turnover. Most docking
protocols, which as previously described use a rigid-body
approximation for the protein structure, do not allow proper
modeling of this flexibility, which is an enormously important
component of enzymatic structure and function. In terms of
protocols where large structural data bases of small mole-
cules are systematically screened for potential binding and
therapeutic activity, this means that there is an inherent bias
against molecules bulkier than naturally occurring substrate
molecules, a fact that lowers the “‘hit”’ rate of such screening
methods by an undetermined amount.

A Receptor-Agonist Complex—Attacking the
Protein-Protein Docking Problem

One of the most striking results from the recent application
of docking algorithms to the prediction of ligand—protein
structures is that protocols utilizing a mix of energy evalua-
tion methods and search patterns display a relatively high
success rate at finding the correct structure when multiple
runs are performed and the program is allowed to have
several opportunities at finding energetic docked minima. In
two recent, authoritative reports (10, 11), roughly 80-90% of
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those systems analyzed yielded such results (typical prob-
lems used as test cases include trypsin-bovine pancreas
trysin inhibitor, serine protease—ovomucoid third domain,
and lysozyme-Fab complexes).

However, these same reports are less successful in differ-
entiating between a ‘‘correct’’ result and alternatives that
display similar interaction energies, interface complementar-
ity, and buried surface areas, but at different locations on the
protein surface. These results indicate that final energy
minimization of the docked solutions usually distinguishes to
a limited degree between ‘‘true’” and ‘‘false’’ positives, but
with very small calculated energy differences, so that obvi-
ously unique, correct solutions are rare (=10% of test sys-
tems reported). We have recently reported a strategy, termed
‘“binary docking’’, which combines genetic information
about a specific protein—protein association with the tech-
niques reviewed above to produce a model of interaction
between a periplasmic transport protein and its membrane-
bound receptor (12). The method is designed to provide a
check for internal consistencies, which helps to validate the
quality of the resulting three-dimensional model.

The tar protein was originally shown to be a membrane-
bound transducer for aspartate chemotaxis (25), and the same
receptor from E. coli was subsequently shown to bind MBP
also. The periplasmic domain of the Salmonella receptor has
been solved crystallographically (26), and it is a straightfor-
ward procedure to deduce the structure of the E. coli receptor
to which it has high homology. The site of interaction of the
receptor and MBP is unknown, although mutants of both
proteins that eliminate maltose taxis (27-29) are known.
Using clues from these mutational studies, we selected two
octapeptides in the regions of MBP that had sites of mutations
that affected maltose chemotaxis (Fig. 3). Peptides from each
region were then generated, docked to the receptor, and
energy-minimized to their optimal positions on the aspartate
receptor by using the molecular-affinity simulated annealing
%rocedure of Goodsell and Olson (7). Large protein grids (30

3) were purposely calculated in order to allow the ‘‘sub-
strates’’ to achieve a random walk over a large surface of the
receptor periplasmic domain.

In an initial test application of the automated docking
protocol with the receptor model as a target, a model of
aspartate (zwitterionic form) with partial atomic charges in an

MBP Peptide 1:

Gln - Val - Ala- Ala -E- Gly -- Gly - Pro

49 53
MBP Peptide 2:

Trp - Tyr - Ala - Val - Arg -[Thr|- Ala - Val - lle

340 345

Fic. 3. MBP and the peptides identi-
fied genetically as important for maltose
taxis and for binding to the aspartate
receptor. Peptide 1 is a loop region in the
N-terminal domain of the receptor; pep-
tide 2 is a length of helix in the C-terminal
domain. [Modified figure reproduced
with permission from ref. 12 (copyright
Macmillan Magazines Ltd).]
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arbitrary initial conformation (which was unrestrained during
docking) was docked to the protein. The results of our
docking runs show that the calculated bound location and
conformation of aspartate within the receptor structure
matches the crystallographically observed aspartate-bound
structure to within an rms deviation of 0.96 A (Fig. 4). This
matches our results with isocitrate and IDH (rms deviation =
1.95 A), indicating that even with a large global search area,
docking algorithms are capable of locating ligand binding
sites.

In the case of MBP and the aspartate receptor, the size of
the docked species is obviously far too large to pursue a direct
automated docking solution. However, two peptide se-
quences were selected based on mutations that eliminated
maltose taxis. These peptides were then used as the ligands
to find their binding sites on the receptor. The Protein Data
Bank coordinate files for each peptide with partial charges

Proc. Natl. Acad. Sci. USA 90 (1993) 1151

FiG. 4. Stereoview of aspartate

:\ bound to its receptor. The crystallo-

graphic structure of the complex is
shown as thin bonds, and the best com-
putationally docked solution of aspartate
is superimposed and shown as the mole-
cule with thick bonds. The rms difference
between the two bound models is 0.96 A.

appended for each atom were generated from the crystal
structure of the intact protein. In this manner the large
tertiary structure of MBP is reduced to a pair of small
molecule species. These two peptides were then used as
substrate molecules in independent docking runs against the
structure of the aspartate receptor. For each peptide, five
separate docking minimizations were performed as de-
scribed. Both peptides from MBP produce several docked
positions and orientations, with one solution in each case
dominating the total number of runs, both in terms of final
docked energy and in the number of times that solution was
produced (Table 1). However, the differences in energy
between the minimum and the next best alternates are quite
small (<5%), a fact that mirrors the results seen by other
investigators during protein—protein docking experiments.
Peptide 2, corresponding to residues 340-348 in MBP
(helix 13 in the C-terminal domain), gives the same docked

F1G.5. (Left) Stereoview of the two peptides from MBP (thick bonds) in their computationally docked positions on the receptor (thin bonds).
Peptide 2 (from helix 13 of the MBP C-terminal domain) packs into the dimer interface against two receptor helices. (Right) The structure of
MBP in its conformation from the final, minimized complex structure is shown for comparison. [Reproduced with permission from ref. 12

(copyright Macmillan Magazines Ltd).]
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solution in four of five runs and a bound energy of —15.2
kcal/mol, packing against the parallel helices 2 and 4’ of the
receptor dimer (Fig. 5), in close contact with residues 73-85
and 148'-152' of tar protein (regions previously implicated as
being involved in MBP interactions). Peptide 1, correspond-
ing to a loop region in the N-terminal domain of MBP
encompassing residues 49-57, minimized to the same solu-
tion in three of five runs. The final energy, however, is quite
high (2411 kcal/mol), which may reflect the fact that this
peptide interacts in the docked structure with disordered
external loops of the receptor, which are not resolved clearly
in the x-ray structure. It is in close contact with residues
73'-81' of the receptor, which have also been shown genet-
ically to bind MBP.

The strategy of docking independent peptides from MBP
has two important advantages. First, the ‘‘goodness’’ and
reproducibility of unique docked solutions for each individual
peptide can be assessed by examining final bound energies
and the number of runs that produce the same result. Second,
we can assess the accuracy of the docked solutions by three
criteria for each peptide: (i) by comparing the calculated final
positions, conformations, and distances between the two
peptides (derived from independent runs) with those found in
the crystallographic structure of MBP; (ii) by examining the
quality of the protein—protein complex structure after super-
imposing MBP on the docked peptides; and (iii) by the
agreement with separate genetic evidence that identifies
regions on the receptor that should be found to interact with
specific residues in MBP. This three-part validation process
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is important for assessing the correctness of the predicted
model and for overcoming the ambiguities inherent in mac-
romolecular docking.

Assessment of the docking solutions. The two peptides that
were docked independently are both located on the surface of
the receptor, with an approximate distance between one
another of 30.0 A (the C* of Thr-53 to the C= of Thr-345). The
distance between the same two residues in MBP (complexed
to maltose) is 29.3 A. Superposition of the backbone atoms
of residues 340-348 in MBP on peptide 2, which is located on
the receptor surface after docking, leads to an almost direct
overlap of the sequence of peptide 1 with its corresponding
residues in MBP (rms total = 2 A). The intact MBP, oriented
by overlapping the two docked peptides, produces an excel-
lent initial model, which suffers from steric conflict between
the two proteins in only two locations involving surface loops
of MBP and tar protein (residues 37-45 of MBP clash with tar
loop 1 residues 68—86; MBP residues 610-615 overlap helix
3 of tar residues 130-135). Restrained minimization of the
resulting complex structure produces a final solution (Fig. 6)
of good geometry and energy.

The docked structure of MBP and the aspartate receptor.
The internal consistencies within the binary docking of MBP
to the receptor is enough to convince most investigators of
the basic correctness of the model and of the power of
computer docking algorithms. However, a second area of
validation exists, which reinforces this conclusion: agree-
ment of the predicted structure with all the genetic and
chemical evidence that exists regarding binding of the two

F1G. 6. Stereo protein backbone (Up-
per) and space-filling (Lower) diagrams
of the complex of MBP bound to the
dimeric structure of the periplasmic do-
main of the aspartate receptor, as gener-
ated from the computational docking of
the genetically selected peptides shown
in Figs. 3 and 5. The receptor domain is
oriented with the ends of the helices that
extend into the membrane pointing
down. [Modified figure reproduced with
permission from ref. 12 (copyright Mac-
millan Magazines Ltd).]
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receptors to one another. The structure of the protein com-
plex reported here contains a number of details that agree
with various analyses and observations of the binding pro-
tein, the receptor, and maltose chemotaxis. One of the
clearest results of several different genetic experiments on
maltose chemotaxis, which is supported by the model pre-
sented here, shows that, of the five residues that directly bind
aspartate, one (Arg-73) is also important for response to
maltose (11, 19). In addition, mutation of Arg-73 acts to
suppress the deleterious effect of mutating residues 53 and 55
in MBP. In the docked model of the protein-receptor com-
plex, Arg-73 is the only one of these residues on the receptor
that is directly involved in binding interactions to MBP,
through hydrogen bonds to the backbone of the bind-
ing protein. Equally important, the side chain is located
3-4 A from residues 53 and 55, which in turn contact a series
of receptor residues involved in protein binding. Thus the
complementation of mutations of residue 73 of the receptor
with mutations of residues 53 and 55 of MBP is consistent
with the model of the interactions based on the docking
calculations.

One of the most intriguing aspects of the aspartate receptor
is the fact that it can simultaneously and independently
modulate responses to both aspartate and maltose (30). It is
probable that this would necessitate sequential binding of
both aspartate and MBP, which would lead to independent,
additive signaling events. Crystallographic analysis of the
receptor periplasmic domain (26), in conjunction with binding
studies in our laboratory, seems to support half-of-sites
binding of aspartate and negative cooperativity between the
aspartate binding sites (D. Milligan, H. P. Biemann, and
D.E.K., unpublished results). In the current models of re-
ceptor signaling, this binding event initiates a conformational
change within the receptor structure, causing conformational
changes in the protein dimer (26, 30, 31).

In the complex of MBP to the receptor reported here, the
binding protein associates with the external loop regions of
the tar protein, and primarily with the helices 2 and 4’ at one
side of the dimer interface. In the complex, one of the two
available aspartate binding sites is buried in the protein
interface, whereas the second is completely solvent acces-
sible. This would imply that aspartate is capable of binding a
single accessible site and promoting chemotaxis before or
after the binding of MBP. In the case of a mechanism
involving conformational changes within individual mono-
mers, it is easy to visualize signaling and adaptation induced
within one receptor subunit by a single bound aspartate and
a second independent signal transduced through the second
subunit in response to the binding of MBP. The tar protein
may have evolved a pattern of half-of-sites binding for
aspartate and subsequent signaling through a single subunit in
order to prevent saturation of the signaling potential of the
receptor by high aspartate concentrations, which would
negate the ability of the receptor to display a separate,
additive signal in response to a second stimulating ligand such
as maltose-bound MBP.

In conclusion, high-resolution structural studies of pro-
teins, when combined with accurate dynamic modeling and
energy calculation methods, seem capable of providing the
information necessary for the prediction of complex binding
events, such as protein—protein interactions. Such docking
predictions can be performed with only a most basic knowl-
edge of the chemical structure of the ligands of interest when
they are small molecules and with the help of genetic evi-
dence when large macromolecules are used. The ability to
predict computationally and examine the binding of mole-
cules ranging from single amino acids to 60,000-kDa (or
larger) proteins is an elegant testimony to the combined
power of protein crystallography, computational biophysics,
and molecular biology.
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