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Embedded-fragment method for condensed-phase systems

We use an implementation of the embedded-fragment metlddsh have enabled a faab
initio calculation of clustef8=S? crystal$1%-522 and even liquid®*-S2°(see also GaB®. The
implementation is the binary-interaction method (B&#/#S22

In this method, the expression of the potential energy pircefi, E, is given by
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Here, the summations run over monomieirs the primary unit cell ang in all unit cells. E;.q is
the total energy of theh monomer embedded in the field of point chard@3.(These charges are
placed on all atoms of the molecules whose centers of mdssifain the distance oRgr from
the center of mass of théh monomer.

Ei.q is obtained as the eigenvalue solution of the Schrodingeaton with the following

Hamiltonian in some approximation (such as MP2):
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wherei andQ; indicate the QM (fragment) and EF (embedding field) regioespectivelym and
nrun over all electronsh andB over atomsR, etc. are distances between the particles specified
by the subscript<Z, is the Ath atomic number, and, is the partial charge of thath atomic site

in the embedding field.

Eijqug, is the total energy of the dimer consisting of itieand jth monomers in the union of
their two embedding fieldsE;.ququ; is the total energy of theh monomer in the union of the
embedding fields of thigh andjth monomers plus point charges on the atoms ofithenonomer.
We introduce the cutbdistanceR; < Rom for the dimer calculations, whei®; is the distance
between the centers of mass of fitie and jth monomers.Rqyy is assumed to be less than the
unit-cell length, which is reasonable for simulation ofuids where the unit-cell length is large.
This assumption can easily be lifted for periodic solid dations. See Supplementary Figlré S1

for the schematic drawing of these three fragments.
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The first term in the right-hand side of E@. {S1) double-ceuhe Coulomb interactions be-
tween theith monomer and the atomic charges in the embedding field oftthenonomer and
vice versa. These spurious interactions are eliminatechéysécond term only in the range of
Rj < Rom. The remaining error is removed I8¢, which is given by

== 20 ) BE if Row<R; < Rer (S3)
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whereA andB run over atoms in théh and jth monomers, respectivel¥ g contains the long-

range Coulomb interactions truncated at distaRge

ELR—ZZZquB, if Rer < Rj < Rr. (S4)
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The gradient with respect to thecoordinate of théth atom,x,, can be determined by
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where dE;.q /0% 0Eijquq, /0%, etc. are derivatives of the monomer and dimer energies, tak
ing into account both the variations in the atomic coordisah the QM region and embedding
fields. They are readily obtained by combining the analjAgradient and analytical-electric-field
computation capabilities available in most molecularwafe. Using the atomic gradients, the

instantaneous pressure along ¥axis at temperatur€ is evaluated as

Px:—l 0E  NKkgT

kakaxk+ v (S6)

whereN is the number of molecules in the unit &8Il The validity of these energy and gradient
formulas and programs was confirmed by the energy consenvatia BOMD simulation with

the microcanonical ensemble.

Accuracy of the BIM

In the application of the BIM to liquid watemb initio calculations are performed for the
monomers and dimers of the water moleculable [S1 summarizes the performance of vari-

ousab initio and DFT methods for the water dimer in t8¢ structure, which is discussed in the
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Supplementary Figure S1| Schematic drawing of three different fragments. Each yellow
circle represents a monomer fragment treated quantum mieclig, as embedded in the

spherical embedding field (blue) consisting of atomic pohdrges.
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Supplementary Figure S2| Water dimers. Three diferent water dimer structures in thg, C;,

andC,, symmetry groups that are used for the calculations of thatgrmdial energy surfaces.

main text.Supplementrary Figure[S2 depicts the three water dimer structures considerecakin th
main text.

As a test of the BIM, the potential energy curve o,(sCl~ is calculated as a function of
the CI - - - (H,0); distance (seSupplementary Figure[S3) at the MPR2ug-cc-pVDZ level. The
results show that the BIM can also reproduce the potentiaiggncurve of the brute-force MP2
calculation extremely accurately, even when one of thenfiegs is charged and strongly polariz-

able.
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Supplementary Table S1| The binding energy and oxygen-oxygen distance of the water
dimer. The binding energyAE in kcay/mol) and equilibrium G-O separationF@g‘g in A) of the
optimizedCs water dimer. The frozen core approximation was employetlen$CS-)MP2

binding energies.

Method AE RDID.

MP2/aug-cc-pVDZ 5.26 2.917

MP2/aug-cc-pVTZ 5.18 2.907
MP2/aug-cc-pvVQZ 5.09 2.900

MP2/cc-pVDZ 7.47 2.909
MP2/cc-pVTZ 6.08 2.907
MP2/cc-pVQZ 5.49 2.902
MP2/6-31G 8.38 2.869
MP2/6-31G* 7.32 2.916

SCS-MP2aug-cc-pVDZ 4.86 2.942
SCS-MP2aug-cc-pVTZ 4.76 2.931
SCS-MP2aug-cc-pvVQZ 4.66 2.930
BLYP/aug-cc-pVDZ 4.30 2.936
BLYP/aug-cc-pVTZ  4.17 2.943
BLYP/aug-cc-pvVQZ  4.19 2.941

BLYP/TZV2P 4.75 2.966
CCsD(T)CcBS? 5.02 2.910
a Juretka et ab28,

Effect of the MD time step on the IR spectra and RDF

We examined whether and to what extent the 1-fs time stegsdtie MD results in comparison
with the 0.2-fs time step, using the TTM3-F force figd?] which reproduces infrared (IR) spectra
of liquid water. As shown irBupplementary Figure[S4, classical MD simulations wittit = 1 fs
reproduces the radial distribution function (RDF) and IRapa nearly exactly obtained with
dt = 0.2 fs. The time-step errors in the latter are on the ordey 60 cnTt! or ~ 1.5 % observed

only for the frequencies of the OH stretching bands-&500 cm?, but negligible for lower-
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Supplementary Figure S3| Potential energy curve of (H,0)3;Cl~. The structure of (KO)sCl~

AE/E,

optimized at MP2aug-cc-pVDZ and the potential energy curve as a functioheflistance (in

A) of CI- from the water trimer.

frequency bands or for the shapes and widths of any band. oltldlbe remembered that the
classical treatment of the hydrogen atoms causes largesamothe order of 300 cnt! in the
frequencies of the OH stretching bands because of the mupleantum éects, which make the
aforementioned time-step errors insignificant.

The experimental frequencies are often scaled even forgéesivater molecule to empirically
correct anharmonicity and otheffects. When such frequency scaling is appli&applementary
Figure[S4), the calculated and observed spectra match excellemdlyhe diferences in the OH

stretching frequencies between the 0.2- and 1-fs simulati@come practically negligible.

Effect of the system size on the pressure

We performed the MD simulations with the TTM-3F force fieldlat 300 K andp = 1 g/cm®
to quantify the &ect of the system size on the pressure. A small unit cell stediof 32 water
molecules, while a large unit cell had 512 water molecuBepplementary FigurelS8 shows that
the average pressure of the MD simulation with the smalleglltis —0.03+ 0.54 GPa, while it is
+0.02+ 0.13 GPa with the large unit cell. The two pressures agree \aith ether well within the
statistical uncertainty of the 512-molecule calculatibtence, the simulation with 32 molecules
per cell can reasonably describe the pressure and is ergectproduce other properties of liquid

water accurately as well.
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Supplementary Figure S4| Effect of atime step on RDF and IR spectra. The radial
distribution function (RDF) and infrared (IR) spectra afuid water obtained from classical MD

simulations with the TTM3-F force field at twoftirent time steps.
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Supplementary Figure S5| Effect of the system size on the pressure. The pressure of liquid
water obtained from classical MD simulations with the TTH3erce field with two dfferent

unit-cell sizes.
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