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I. ELASTIC CAGE DISTORTION AND THE
ORIGIN OF P-WAVE SYMMETRY

In this section, we show that under an affine cage dis-
tortion, the structure factor in the imaged plane (shear
direction - shear axis plane) acquires the p-wave symme-
try observed in the experiments at small strain. Let x be
the direction of shear, z the shear gradient direction, and
y the shear axis as shown in Fig. 1c of the manuscript.
When the cage is distorted according to the applied shear
field, there is an important component of affine deforma-
tion as long as the system reacts elastically (i.e. solid-
like). The affine displacements due to the applied shear
tend to distort the cage in the x — z plane as shown in
Fig. 1c. In addition to the affine displacements, at a
non-zero shear rate, there are also displacements along
the vorticity lines (the red arrows in that figure) of the
shear field: Particles tend to be depleted in the extension
sectors of the x — z plane, and they tend to accumulate
and crowd in the compression sectors. The combined ef-
fects of vorticity, crowding, and excluded-volume (hard-
sphere repulsion) between particles in the compression
sectors lead to a force dipole along the z-direction. As
shown in Fig. 1c in the main article, the center of mass
of the dipole coincides with the tagged particle at the
center of the cage.

The elastic field of the force dipole and its component
in the imaged = — y plane can be calculated as follows.
The elastic field obeys the Poisson-like equation K V?u =
—f(r), where K is the bulk modulus, and f is the local
force dipole given by f(r) = fole - V(r)Jn. The dipole
moment is given by p = foe, with € = en, and the Dirac
delta is centred at the center of mass of the dipole, i.e.
on the tagged particle at the center of the cage which we
take as the origin of the spherical reference frame (r = 0).
The solution to the Poisson equation for the elastic field
induced by the force dipole is given in analogy with the
electrostatic problem (field induced by an electric dipole),
and is given by [1]

p r-n
u(r) = K 3 (1)

In the spherical frame, the position vector is defined
as r = (rg,ry,7r,) = (rsinfcosp,rsinfsinp,rcosf).
Similarly, the unit vector defining the dipole direction
n = (n;,0,0,) = (sinfcosp,0,0). Here, 0 is the polar
angle, measured with respect to the z-axis, while ¢ is
the azimuthal angle in the x — y plane, measured with

respect to the z—direction. Therefore ¢ = «. Upon re-
placing the expressions for r and n in polar coordinates
in Eq.(1) above, we immediately get the angular depen-
dence of the magnitude of elastic displacement in the
x — gy plane by choosing 6 = 7/2. We obtain the follow-
ing angular dependence of the elastic field in the z — y
plane

u(a) o r - n o sin?fcos’a = cos®a (2)

where in the last equality we used sin? = 1 for § = 7/2
(r — y plane). This derivation demonstrates that the
force dipole along the xz—direction caused by the affine
cage distortion in Fig. 1c induces an elastic field in the
x —y plane which goes as cos? o, i.e. has p-wave symme-
try. This is indeed the symmetry of the structure factor
observed experimentally for the sheared glass.

II. FLUCTUATIONS AND INTER CYCLE
STRUCTURE

We independently confirmed the sharp dynamically-
induced transition in the fluctuations of the structure
factor. To do so, we investigated in detail fluctuations
and their time correlation during the oscillatory shear.
Recent work on the oscillatory rheology of soft glasses
suggests that the material may exhibit a succession of
straining, yielding, and flow within each period of oscil-
lation [2]. We thus investigated, in our x-ray data, the
presence of any typical time scale of yielding and flow
within the underlying oscillation period. We used both
time correlation and Fourier analysis to look for such
typical time scale. We compute time correlations by cor-
relating order parameter values at times ¢ and ¢t + At
using

(At) =
1 T
f/0 (C(t+ At)— < C(t) >)(C(t)— < Ct) >)dt, (3)

where t ~ 1og(Yo/Yomin) and we correlate order parame-
ter values C(t) = C(8 = 7, t) as a function of delay time
At ~ Alog(vp). Here, T is the averaging time interval.
A typical result obtained for sufficiently large averaging
time interval is shown in Fig. Ia. No characteristic time
scale is observed. The data rather suggests that the fluc-
tuations are random and due to noise. This is confirmed
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FIG. I. Time correlation and Fourier analysis of structure factor. (a) Autocorrelation function F'(t) of the fluctuations
of the order parameter C'(8 = ,0) in the non-linear regime after symmetry-breaking. Averaging was done over T' = 10 seconds
corresponding to 100 frames. (b) Fourier analysis of the same quantity. Only a very weak peak is found at the characteristic

frequency 1 Hz.

independently by Fourier analysis: we fourier-transform
the same signal and show the Fourier amplitude as a func-
tion of frequency in Fig. Ib. Although the data might
suggest that there is a weak peak at 1Hz (and possibly
0.5 Hz), its amplitude is of the order of the noise. We
hence cannot unambigously detect a typical frequency
related to the applied shear oscillation, and we interpret
the fluctuations as noise . Further work with higher time
resolution is needed to detail this point. Because of the
lack of a characteristic time scale, for the order param-
eter in the manuscript, we average over one oscillation
period, i.e. we compute time averages using eq. 3 with
At = 1s, the oscillation period.

III. GLASS-LIQUID TRANSITION CRITERION

How can we understand, from a microscopic viewpoint
that the transition from solid to liquid-like response oc-
curs exactly at the intersection of the moduli, G’ = G”'?
On a quantitative level, it can be explained as follows:
The viscoelastic response of the amorphous solid can
be described schematically as composed of three con-
tributions: the affine elastic modulus G 4, the negative
nonaffine contribution —G x4 due to structural disor-
der, and the contribution due to relaxation, Gg e ¥/,
where 7 is the relaxation time due to internal fric-
tion. Hence, G = G4 — Gna + Gr e Y77 [3, 4], with
Ga — Gnya = G4 being the infinite-time, elastic part
of the response. One should note that G 4 is related to
local bonding and may change with the applied strain
~ due to irreversible changes in the local connectivity.
Upon Fourier-transforming we obtain the standard form
G' = Gr+ (Goo — Gr)[1 + (wTr)?] ™! [4]. Previous work

based on the non-affine response formalism [3, 5] has
shown that the elastic response of an athermal amor-
phous solid vanishes when the nonaffine contribution be-
comes equal to the affine contribution, which is the point
at which rigidity vanishes: Goo = Ga4—Gna = 0. At this
point, we necessarily have G/ = Gr(1—[1+ (wg)?]™!) =
Gr(wTr)?/[1 + (wTr)?]. Next, recall the form of the
loss modulus in the same standard linear solid model [4]
as G" = Grwtr/[l + (wTr)?]. At intermediate fre-
quencies which probe the material’s viscoelastic response,
wTr =~ 1, therefore, the condition Goo = G4 — Gnya =0
leads straight to the equality G’ ~ G”. This equality
must hold, at least approximately, at the rigidity tran-
sition of an amorphous solid, where G, = 0 due to
nonaffine motions becoming overwhelming with respect
to the affine motions [5]. This transition in the vis-
coelastic regime (finite or intermediate frequency) can-
not be very sharp because it is partly obscured by the
relaxational contribution to the modulus (x Gr) which
remains finite even though the zero-frequency/infinite-
time part (Goo) has vanished at the rigidity transition.
This argument provides an additional indication that it
is indeed the transition from the affine-dominated regime
G4 >| Gna | (associated with the shear-induced symme-
try) into the nonaffine-dominated regime G4 <| Gna |
(associated locally with disorder and fluctuations) that
we probe in our experiment. We hence show experimen-
tally that indeed the affine to non-affine rigidity transi-
tion is the key microscopic phenomenon controlling the
macroscopic criterion G’ = G” at the onset of flow. The
fact that we recover G’ = G” as a criterion for the tran-
sition from a solid to a liquid state from our microscopic
mechanism proofs the robustness of our proposed sce-
nario.

[1] Landau LD, Lifshitz EM (1960) Electrodynamics of Con-
tinuous Media (Pergamon Press, Oxford).

[2] Rogers SA, Erwin BM, Vlassopoulos D, Cloitre M (2011)
Oscillatory yielding of a colloidal star glass. J. Rheol.



55(4):733-752. [4] Zener C (1948) Elasticity and anelasticity of metals
[3] Lemaitre A, Maloney C (2006) Sum Rules for the Quasi- (Chicago Univ. Press, Chicago).

Static and Visco-Elastic Response of Disordered Solids at [5] Zaccone A, Scossa-Romano E (2011) Approximate ana-

Zero Temperature. J. Stat. Phys. 123(2):415-453. lytical description of the nonaffine response of amorphous

solids. Phys. Rev. B 83(18):184205.



