
Scattering of an energetic electron wave packet by an atomically thin sample

Here, we present a derivation of Eq. (A.8) and discuss the involved approximations.

General considerations
We consider scattering of an electron wave packet from an atomically thin sample (e.g. graphene) placed at z = 0. Considering

the Coulomb interaction between the projectile electron and the sample as a perturbation described by an operator V̂ , we write

the time-dependent Schrödinger equation in the integral form using atomic units:

Û(tf, ti) = Û0(tf, ti)− i

∫ tf

ti

dt Û(tf, t)V̂Û0(t, ti). (1)

Here, Û0(t, ti) is the evolution operator without the perturbation, and Û(t, ti) is the exact propagator. These operators act on

many-electron wave functions that depend on the electrons of the sample, as well as on the projectile electron:

|Ψ(t)〉= |ψs(t)〉⊗
∣

∣ψp(t)
〉

. (2)

The probability amplitude to make a transition from an initial state |i〉 to a final state | f 〉, as time goes from ti to tf, is given by

〈

f
∣

∣Û(tf, ti)
∣

∣ i
〉

=
〈

f
∣

∣Û0(tf, ti)
∣

∣ i
〉

− i

∫ tf

ti

dt
〈

f
∣

∣Û(tf, t)V̂Û0(t, ti)
∣

∣ i
〉

. (3)

The choice of ti and tf is arbitrary, as long as ti precedes the interaction of the incident wave packet with the sample, and the

interaction is accomplished by the moment tf. Our ultimate goal is to evaluate the probability pGGG of detecting an electron

within a Bragg peak labelled by the reciprocal-space vector GGG.

Without the interaction between the sample and the projectile, their wave functions evolve independently:

Û0(t, ti) |i〉= |ψs(t)〉⊗
∣

∣

∣
ψ

(i)
p (t)

〉

, (4)

where |ψs(t)〉 is assumed to be known, and the incident wave packet propagates according to

∣

∣

∣
ψ

(i)
p (t)

〉

=
∫

d3k e−i k2

2 (t−ti) |kkk〉
〈

kkk|ψ(i)
p (ti)

〉

. (5)

Here, we have neglected the acceleration of the projectile electron by the laser pulse and introduced plane waves:

〈rrr|kkk〉= eikkkrrr

(2π)3/2
. (6)

Now we make two approximations: we neglect inelastic scattering and apply first-order perturbation theory. The former

approximation allows us two use the known |ψs(tf)〉 in the final state; that is, we assume that the projectile electron has no

effect on the sample. In this case, a possible final state is

| f 〉= |ψs(tf)〉⊗ |kkkf〉 . (7)

The application of perturbation theory consists in replacing Û(tf, t) with Û0(tf, t) in the right-hand side of Eq. (3). The

interaction between the sample and the projectile being neglected,

〈 f |Û0(tf, t) = e−i
k2
f
2 (tf−t) 〈kkkf|⊗ 〈ψs(t)| , (8)

which allows us to re-write Eq. (3) as

〈

f
∣

∣Û(tf, ti)
∣

∣ i
〉

≈
〈

kkkf|ψ(i)
p (tf)

〉

〈ψs(tf)|ψs(tf)〉− i

∫ tf

ti

dt e−i
k2
f
2 (tf−t) 〈kkkf|⊗ 〈ψs(t)|V̂ |ψs(t)〉⊗

∣

∣

∣
ψ

(i)
p (t)

〉

. (9)

The first term on the right-hand side of this equation is irrelevant to us as it describes propagation without scattering, so we

drop it. We will also drop the inessential phase factor exp[−ik2
f tf/2].

Evaluating the matrix element 〈kkkf| ⊗ 〈ψs(t)|V̂ |ψs(t)〉⊗
∣

∣

∣
ψ

(i)
p (t)

〉

, one can begin by integrating over all the electrons of

the sample, which is possible as long as the projectile electron is not entangled with |ψs(t)〉 at any time. Once this integration
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is performed, 〈ψs(t)|V̂ |ψs(t)〉 can be regarded as a time-dependent single-electron scattering potential, which we denote by

V̂s(t). If, in addition, one neglects the exchange interaction between the projectile and the electrons of the sample, V̂s(t)
becomes a local potential represented by a spatially periodic function, which is the potential induced by the charge density of

the sample ρ(rrr, t):

Vs(rrr, t) =Vs(rrr+aaa1,2, t), (10)

Vs(rrr, t) =−ϕ(VB)(rrr, t)−ϕ(core)(rrr, t), (11)

∇2ϕ(rrr, t) =−4πρ(rrr, t), (12)

where ϕ denotes the scalar potential, and “VB” stands for valence bands. Exchange interaction would add non-local terms to

V̂s(t), and we assume that projectile electrons are sufficiently energetic to neglect these terms.1

Finally, the probability amplitude of detecting a scattered electron with a momentum kkkf is given by the following well-

known expression:

α(kkkf) =−i

∫ tf

ti

dt ei
k2
f
2 t
〈

kkkf

∣

∣V̂s(t)
∣

∣ψ
(i)
p (t)

〉

. (13)

Probably the most essential approximation that we have made so far is that of neglecting inelastic transitions, and some

comments here are due. The most important argument supporting this approximation is that we are interested in the probability

of scattering an electron within a rather small solid angle associated with a certain Bragg spot. Inelastic processes are expected

to contribute little to these probabilities because they scatter electrons into a much larger solid angle, and also because the

probability of inelastic scattering rapidly decreases with the scattering angle.

We must also mention that inelastic transitions can play an important role when energetic electrons or X-ray pulses are

scattered from atoms prepared in a coherent superposition of its eigenstates.1–5 Here, interference between different quantum

pathways plays an essential role. For example, if an atom is in a superposition of eigenstates |1〉 and |2〉, then elastic scattering

from state |2〉 can interfere with the quantum path where scattering from state |1〉 is accompanied by a transition from |1〉 to

|2〉, provided that the probe pulse is sufficiently broadband, so that the two pathways can lead to the same final energy of the

scattered particle (electron or photon). Even if the probability of the latter pathway is much smaller than that of the elastic

one, their interference can lead to significant effects, especially in the angular distribution of scattering probabilities. While

we cannot strictly rule out the importance of such interference effects in the case of condensed matter, we neglect them for

the same reasons why we neglect inelastic scattering in general—to be observable, inelastic scattering must be significant at

diffraction angles satisfying the Bragg condition. Also, we consider an electron pulse that is longer than a typical period of

quantum oscillations formed by coherent superpositions of conduction- and valence-band states. That is, the fast oscillations

present in Figs. 2(c-e), which are particularly visible at the trailing edge of the laser pulse, are not resolved in the Bragg-peak

intensities presented in Fig. 3 of the main text.

Probability of Bragg scattering

During one femtosecond, an electron that has a kinetic energy of 10 keV propagates over a distance of ∼ 103 atomic units.

Thus, for an atomically thin sample (thickness ∼ 1 at. u.), the following approximation can be made:

Vs(rrr, t)ψi(rrr, t)≈Vs(rrr, t)ψi(x,y,z = 0, t)eikz(t)z, (14)

where kz(t) is defined as

kz(t) =

(

∂

∂ z
arg
[

ψi(rrr, t)
]

)∣

∣

∣

∣

z=0

. (15)

Furthermore, it is convenient to factor out the time dependence of the incident wave packet:

ψi(x,y,z = 0, t) = φ(x,y, t)e−iε0t , (16)

where

ε0 =
k2

0

2
(17)

is the mean projectile energy. Using Eqs. (16), (14), and (6), we rewrite Eq. (13) as

α(kkkf) =− i

(2π)3/2

∫ tf

ti

dt e
i

(

k2
f
2 −ε0

)

t
∫

d3r e−ikkkfrrrVs(rrr, t)φ(x,y, t)e
ikz(t)z. (18)
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To proceed, we consider an auxiliary problem of integrating exp[−iqqqrrr‖] f (rrr‖) with rrr‖ = (x,y) for a spatially periodic

function f (x,y) over a finite number of two-dimensional unit cells:

I =
N

∑
m=−N

N

∑
n=−N

∫

cell
d2r‖

(

e−iqqqrrr‖ f (rrr‖)
∣

∣

∣

rrr‖→rrr‖−maaa1−naaa2

)

.

For f (rrr‖−aaa1,2) = f (rrr‖),

I =
N

∑
m=−N

N

∑
n=−N

∫

cell
d2r‖ e−iqqq(rrr‖−maaa1−naaa2) f (rrr‖) =

N

∑
m=−N

N

∑
n=−N

eiqqq(maaa1+naaa2)
∫

cell
d2r‖ e−iqqqrrr‖ f (rrr‖) =

=
sin
(

qqqaaa1

(

N + 1
2

))

sin
(

qqqaaa2

(

N + 1
2

))

sin
(

1
2
qqqaaa1

)

sin
(

1
2
qqqaaa2

)

∫

cell
d2r‖ e−iqqqrrr‖ f (rrr‖).

The auxiliary problem that we are solving here is that of a spatially constrained electron beam, where φ(x,y, t) is only nonzero

if there are integer numbers |m| ≤ N and |n| ≤ N such that rrr‖−maaa1 −naaa2 lies within the central primitive unit cell. Later, we

will take the limit N → ∞. For simplicity, we consider the case of normal incidence, which allows us to substitute φ(x,y, t)
with φ(t). Also, we normalise the incident wave packet to have one electron per unit cell:

∫ ∞

−∞
dz

∫

cell
dr2

‖

∣

∣

∣
ψ

(i)
p (rrr, t)

∣

∣

∣

2

≡ 1, (19)

so that there are N2 electrons in the wave packet (we use this normalisation just for convenience only, and it does not affect

the final expression for scattering probabilities). The probability density for a particular electron to be scattered into a plane

wave with a momentum kkkf is given by

p(kkkf) = |α(kkkf)|2 =
S(kkkf)

(2π)3

∣

∣

∣

∣

∣

∣

∫ tf

ti

dt e
i

(

k2
f
2 −ε0

)

t
φ(t)

∫

cell
d2r‖ e−ikkkfrrr‖

∫ ∞

−∞
dzei[kz(t)−eeezkkkf]zVs(rrr, t)

∣

∣

∣

∣

∣

∣

2

, (20)

where eeez is a unit vector pointing along the z axis, and S(kkkf) is the structure factor:

S(kkkf) =
1

N2

sin2
(

kkkfaaa1

(

N + 1
2

))

sin2
(

kkkfaaa2

(

N + 1
2

))

sin2
(

1
2
kkkfaaa1

)

sin2
(

1
2
kkkfaaa2

) . (21)

Note that that S(kkkf) only depends on the projection of kkkf onto the (kx,ky) plane.

As N increases, S(kkkf) becomes a function sharply peaked at the positions of Bragg spots: GGG = n1bbb1+n2bbb2, where n1,2 ∈Z,

and the reciprocal-space vectors are defined by

aaaibbb j = 2πδi j. (22)

Indeed, sin [(n1bbb1 +n2bbb2)aaai/2] = sin [π (n1δ1,i +n2δ2,i)] = 0. In the limit N → ∞, the integration of S(qqq) over a particular

Bragg spot can be performed analytically using

lim
N→∞

∫ π

−π

sin2
((

N + 1
2

)

x
)

N sin2
(

x
2

) dx = 4π. (23)

The result is independent of GGG:

lim
N→∞

∫∫

near GGG
dqx dqy S(qqq) = ΩBZ lim

N→∞

∫ 1/2

−1/2
ds1

∫ 1/2

−1/2
ds2 S

(

(n1 + s1)bbb1 +(n2 + s2)bbb2

)

=

= ΩBZ lim
N→∞

(

∫ π

−π
dx

sin2
((

N + 1
2

)

x
)

2πN sin2(x/2)

)2

= ΩBZ

(

lim
N→∞

∫ π

−π
dx

sin2
((

N + 1
2

)

x
)

2πN sin2(x/2)

)2

= 4ΩBZ.

Here, the size of the Brillouin zone ΩBZ = (2π)2/Ωcell appeared as a Jacobian as we changed the integration variables.
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Thus, the probability for an electron to get scattered into a Bragg spot GGG is equal to

pGGG =

∫ ∞

−∞
dkf,z lim

N→∞

∫∫

near GGG
dkf,x dkf,x p(kkkf) =

=
4ΩBZ

(2π)3

∫ ∞

−∞
dkf,z

∣

∣

∣

∣

∣

∣

∣

∫ tf

ti

dt e
i

(

k2
f,z+G2

2 −ε0

)

t

φ(t)
∫

cell
d2r‖ e−iGGGrrr‖

∫ ∞

−∞
dzei[kz(t)−kf,z]zVs(rrr, t)

∣

∣

∣

∣

∣

∣

∣

2

.

We can re-write it more compactly by introducing the spatial Fourier transform of the scalar potential ϕ(rrr, t) =−Vs(rrr, t):

ϕ̃GGG(kz, t) =− 1

Ωcell

∫

cell
d2r‖

∫ ∞

−∞
dze−iGGGrrr‖−ikzz

Vs(rrr, t). (24)

The result is

pGGG =
2Ωcell

π

∫ ∞

−∞
dk

∣

∣

∣

∣

∫ ∞

−∞
dt e

i
(

k2+G2

2 −ε0

)

t
φ(t)ϕ̃GGG

(

k− kz(t), t
)

∣

∣

∣

∣

2

, (25)

where we have set the initial time ti →−∞ and the final time tf → ∞.

We can further simplify this general result if the Fourier transform of the scattering potential ϕ̃GGG varies little within the

bandwidth of the incident electron wave packet. More precisely, we make the following approximation:

ϕ̃GGG

(

k− kz(t), t
)

≈ ϕ̃GGG

(

±
√

2ε0 −G2 − kz(t), t
)

. (26)

The choice of the sign on the right-hand side of this equation depends on the propagation direction of projectile electrons. For

definiteness, we take 〈kf,z〉> 0 and use +
√

2ε0 −G2. Replacing the integral over k by an integral over

ω =
k2 +G2

2
− ε0 (27)

and noticing that only a small range of k near ±(ε0 −G2/2) contributes to pGGG, which allows us to integrate over ω from −∞
to ∞, we obtain

pGGG ≈ 2Ωcell

π

∫ ∞

−∞

dω
√

2ε0 −G2

∣

∣

∣

∣

∫ ∞

−∞
dt eiωtφ(t)ϕ̃GGG

(

√

ε0 −G2 − kz(t), t
)

∣

∣

∣

∣

2

=

=
4Ωcell

√

2ε0 −G2

∫ ∞

−∞
dt

∣

∣

∣
φ(t)ϕ̃GGG

(

√

2ε0 −G2 − kz(t), t
)∣

∣

∣

2

. (28)

The last step here has been made using Parseval’s theorem. At this point, it is convenient to use the central momentum of

the projectile electrons k0 =
√

2ε0 (see Eq. (17)). The number of electrons per unit area crossing the plane z = 0 during an

infinitesimally small time interval dt is kz(t)|φ(t)|2dt. Since we have normalised the wave function of the incident wave packet

to have one electron per unit cell, the probability density for a particular projectile electron to interact with the sample at a

time t is given by

w(t) = kz(t)Ωcell|φ(t)|2. (29)

Expressing pGGG via k0 and w(t), we obtain

pGGG ≈ 4
√

k2
0 −G2

∫ ∞

−∞
dt

w(t)

kz(t)

∣

∣

∣

∣

ϕ̃GGG

(

√

k2
0 −G2 − kz(t), t

)∣

∣

∣

∣

2

. (30)

As the final two approximations, we neglect the time dependence of the projectile momentum at z = 0, assuming that the

incident wave packet is sufficiently long and its chirp is sufficiently small:

kz(t)≈ k0, (31)
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and we assume that the scattering angle is small: k0 ≫ G. Therefore, we approximate

√

k2
0 −G2 − kz(t)≈− G2

2k0
. (32)

As long as Vs(rrr, t) is a real-valued function, ϕ̃GGG(−k, t) = ϕ̃∗
GGG(k, t). Finally, we obtain the following approximation to the more

general result given by Eq. (25):

pGGG ≈ 4

k0

√

k2
0 −G2

∫ ∞

−∞
dt w(t)

∣

∣

∣

∣

ϕ̃GGG

(

G2

2k0
, t

)∣

∣

∣

∣

2

. (33)

Eq. (A.8) in the Methods section differs from this expression only by the explicitly introduced delay of the probe pulse τ .
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