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Supplementary figures
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Figure S1: Oscillation in the long-term transmission dynamics of MP is not significantly
sensitive to the length of the infectious period (a) or to the length of the latent period (b)
if the basic reproduction number does not vary. Parameters are fixed as m,. = 4 (years)
in both figures and m, = 21 (days) in (a), while m; = 21 (days) in (b). The bottom line
shows the boundary for the existence of endemic equilibrium and the upper line shows

the boundary for the stability of endemic equilibrium.
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Figure S2: Change in epidemic cycle over time. No epidemiological interference was

assumed and the parameters are set as m, = 6 years, log;o[o;°] = -0.60.



10

11

12
13

Stability analysis of an SEIRS model

Here we derive parametric expressions that are respectively plotted in Figures S1 (a)
and (b) to determine stability boundaries in two-parameter planes, assuming a delta

distribution for the waning immunity, i.e. G, (7,) = 6y, (7).

Since the demographic process is slow compared to the disease transmission dynamics,
here we may assume u = 0 to facilitate the mathematical analysis. The model (3) in the

main text is written as

S() = ~BsWi) +- it~ m,),
1
) =Bs@i() ——e(),
1 1 ¢ (S1)
i'(t) =——e(t) ——i(0),
1 . 1 .
r'(t) ZEl(t) —El(t—mr).

2 l

First, let us compute the endemic equilibrium for (S1). The endemic equilibrium is

denoted by (E, e i, 1_”). Then one can find that

1
pm;

%]
I

and equalities e = %f andr = %Z Since S+ +i + 7 = 1 holds (the total fraction is
l i

one), we get

1
1__
pm;
me  my’
1+mi+mi

i =

Linearizing (S1) around the equilibrium, we can derive the characteristic equation, see

e.g. [1] for detail. Let I be the 3X3 identity matrix. The characteristic equation is



—Bi 0 myle Amr —m;1
det Bi —m;t m1 — Al | =0. (S2)

0 m, 1! —m
Below we use the notation i to denote the imaginary unit i.e. i = v—1, thus we write A
for Bi. The equation (S2) is

B+ A+mt+miHA2 + Amzt + miHA + AmZim;?
= Amzim; e, (S3)

We now investigate a parameter set such that (S3) has purely imaginary roots to see if
the endemic equilibrium becomes unstable via Hopf bifurcation. Substituting

A =iw, w > 0 into (S3) we get the following two equations
—(A+m;t+miHw? + Amzim;t = Amz m; tcos(wm,.), (S4a)
—wd + Am;t + miHw = —Amztm;  sin(wm,.). (S4b)
From the first equation (S4a) we get

m;' +m; Hw?
A= —_me tm) . (S5)
mzim; {1 — cos(wm,)} — w?

Plugging (S5) into the second equation (S4b) we get

0 = {m;'sin(wm,) + w}m;?

(S6)
+mz[w{1 + cos(wm,)} + m;isin(wm,)m;* + w(w? + mz?).
From (S6) one has
0 = w(w? +mz?)m? +

(S7)

m;[w{l + cos(wm,)} + m;tsin(wm,)]m; + {m;1sin(wm,) + w}.

One can solve (S7) with respect to m; as
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—m;w{1 + cos(wm,)} + m;1sin(wm,)] + /D, (w)’ (S8)

2w(w? + m;?)

m; =m;(w): =

where

D.(w):= mz%[w{l + cos(wm,)} + m_tsin(wm,)]?
—4{m; sin(wm,) + w}w(w? + m;?).

If we plug (S8) into (S5) we get

(mz! + m; (@) o

A= Ne(w):= mgim; (w)~1{1 — cos(wm,)} — w?’

Finally using the relation

pm; — 1 Ry —1
T my+m,+m, m;+m,+m,

we get a parametric expression for R, as
Ry =1+ As(w){m](w) + m, + m,}. (S9)

Fixing m, and m,., we use expressions (S8) and (S9), in the (m;, R,) parameter plane,
to plot the parameter set, where the characteristic equation (S3) has purely imaginary
roots (Figure S1 (a)). We numerically checked stability of the endemic equilibrium as
depicted in Figure S1 (a). Indeed if two parameters (m;, R,) cross the plotted line from
below to above, Hopf bifurcation is expected as purely imaginary roots +iw move to

the right half complex plane. Elaboration of the analysis will be presented elsewhere.

To work in the (m,, R)-parameter plane, we can repeat the same procedure, fixing m;

and m,.. Since (S6) is a symmetric polynomial for m, and m;, one can solve (S6) as

—m; [w{1 + cos(wm,)} + m;'sin(wm,)] + /D;(w)

20 M) (S10)

m, = my(w): =

)

where



Di(w):= m;*{wf{l + cos(wm,)} + m;'sin(wm,)}?
—4{m; 'sin(wm,) + w}w(w? + m;?).

Then from (S5) one obtains

(my(@)™! + m; Jo?

ms(w)~tm; {1 — cos(wm,)} — w?

A=A(w):=
We thus get a parametric expression for R, as
Ry =1+ Aj(w){m] (w) + m, +m,}. (S11)

Similarly we can plot a parametric curve given by (S10) and (S11) in the (m,, Ry)-

parameter plane, see Figure S1 (b).
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