Dairy products consumption and metabolic syndrome in adults: systematic review and meta-analysis of observational studies

Guo-Chong Chen¹, Ignatius M.Y. Szeto², Li-Hua Chen¹, Shu-Fen Han¹, Yan-Jie Li², Rina van Hekezen³, Li-Qiang Qin¹

¹Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, 215123, China ²Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, 010110,. China ³Yili R&D Center (The Netherlands) B.V., 6708 PB Wageningen, Netherlands.

Supplementary figure captions:

Supplementary Figure S1. Sensitivity analysis for cross-sectional/case-control studies, omitting one at a time with the remaining studies pooled.

Supplementary Figure S2. Sensitivity analysis for prospective cohort studies, omitting one at a time with the remaining studies pooled.

Supplementary Table S1. Characteristics of excluded studies and reasons for exclusion

Study	Design	Results for diary	Reasons for exclusion
van Meijl, 2009 ¹	Cross-sectional	Low-fat dairy is beneficial for systolic blood pressure, but	Investigating individual parameters of
		not other MetS parameters.	MetS.
Samara, 2012 ²	Cohort	Dairy improve metabolic profile in men but not in	Investigating individual parameters of
		women.	MetS.
te Velde, 2011^3	Cohort	Diary intake during age 13 to 36 years did not affect MetS	Including adolescent population.
		risk at age 36 years.	
Shin, 2009 ⁴	Cohort	Dairy and milk intake inversely associated with MetS.	Duplicate publication (results for milk
		Dairy: adjusted RR=0.75 (95% CI=0.64-0.88); Milk:	was included in the meta-analysis).
		adjusted RR=0.79 (95% CI=0.67-0.92)	
Yoo, 2004 ⁵	Cross-sectional	Low-fat dairy intake was higher in subjects who had no	Investigating individual parameters of
		risk factors for MetS than those who had 1 to 2 risk	MetS.
		factors.	
Høstmark, 2012 ⁶	Cross-sectional	Cheese intake inversely associated with MS, adjusted	Dairy analyzed as a continuous
		OR=0.97 (95% CI=0.94-0.99)	variable.
Uenishi, 2010 ⁷	Cross-sectional	Calcium intake from dairy reduce MetS in non-smoking	Using calcium as an indicator of dairy
(in Japanese)		women (adjusted OR=0.60, 95% CI=0.41-0.87), but not	intake.
		in smoking men (adjusted OR=1.13, 95% CI=0.85- 1.51)	
		or non-smoking men (adjusted OR=0.80, 95% CI=0.60	
		-1.06)	
Kouki, 2011 ⁸	Cross-sectional	None.	No results on dairy.
Høstmark, 2011 ⁹	Cross-sectional	Cheese intake inversely associated with MS, adjusted	Dairy analyzed as a continuous
		OR=0.96 (95% CI=0.95-0.97)	variable
Wang , 2011 ¹⁰	Case-control	Dairy intake inversely associated with MS, adjusted	Dairy analyzed as a continuous
(in Chinese)		OR=0.78 (95% CI=0.62-0.99)	variable
Al-Daghri, 2013 ¹¹	Cross-sectional	None.	No results on dairy.
Bain, 2013 ¹²	Case-control	None.	No results on dairy.
Bruscato, 2010 ¹³	Cross-sectional	None.	No results on dairy.
Carnethon, 2004 ¹⁴	Cohort	None.	No results on dairy.
Eilat-Adar, 2008 ¹⁵	Cross-sectional	None.	No results on dairy.
Cabello-Saavedra, 2010 ¹⁶	Cross-sectional	None.	No results on dairy.
Kwaśniewska, 2009 ¹⁷	Cross-sectional	None.	No results on dairy.
Michael, 2008 ¹⁸	Cross-sectional	None.	No results on dairy.
Mirmiran, 2008 ¹⁹	Cohort	None.	No results on dairy.
Motamed, 2013 ²⁰	Cross-sectional	None.	No results on dairy.
Prasad, 2012 ²¹	Cross-sectional	None.	No results on dairy.
Reppert, 2008 ²²	Cross-sectional	None.	No results on dairy.

CI, confidence interval; MetS, metabolic syndrome; OR, odds ration; RR, relative risk.

- van Meijl, L.E. & Mensink, R.P. Low-fat dairy consumption reduces systolic blood pressure, but does not improve other metabolic risk parameters in overweight and obese subjects. *Nutr Metab Cardiovasc Dis* 21, 355-361 (2011).
- Samara, A. *et al.* Dairy product consumption, calcium intakes, and metabolic syndrome-related factors over 5 years in the STANISLAS study. *Nutrition* 29, 519-524 (2013).
- te Velde, S.J. *et al.* Dairy intake from adolescence into adulthood is not associated with being overweight and metabolic syndrome in adulthood: the Amsterdam Growth and Health Longitudinal Study. *J Hum Nutr Diet* 24, 233-244 (2011).
- Shin, H., Yoon, Y.S., Lee, Y., Kim, C.I. & Oh, S.W. Dairy product intake is inversely associated with metabolic syndrome in Korean adults: Anseong and Ansan cohort of the Korean Genome and Epidemiology Study. *J Korean Med Sci* 28, 1482-1488 (2013).
- Yoo, S. *et al.* Comparison of dietary intakes associated with metabolic syndrome risk factors in young adults: the Bogalusa Heart Study. *Am J Clin Nutr* 80, 841-848 (2004).
- Hostmark, A.T. & Haug, A. Does cheese intake blunt the association between soft drink intake and risk of the metabolic syndrome? Results from the cross-sectional Oslo Health Study. *BMJ Open* 2(2012).
- 7. Uenishi, K. et al. Milk, Dairy Products and Metabolic Syndrome: A Cross-sectional Study of Japanese. J Jpn Soc Nutr Food Sci 63, 151-159 (2010).
- Kouki, R. *et al.* Food consumption, nutrient intake and the risk of having metabolic syndrome: the DR's EXTRA Study. *Eur J Clin Nutr* 65, 368-377 (2011).
- Hostmark, A.T. & Tomten, S.E. The Oslo health study: cheese intake was negatively associated with the metabolic syndrome. J Am Coll Nutr 30, 182-190 (2011).
- Wang, Y.S. *et al.* [A matched case-control study on the risk factors of metabolic syndrome among policemen]. *Zhonghua Lao Dong Wei Sheng Zhi Ye* Bing Za Zhi 29, 567-571 (2011).
- Al-Daghri, N.M. *et al.* Selected dietary nutrients and the prevalence of metabolic syndrome in adult males and females in Saudi Arabia: a pilot study. *Nutrients* 5, 4587-4604 (2013).
- 12. Bian, S. et al. Dietary nutrient intake and metabolic syndrome risk in Chinese adults: a case-control study. Nutr J 12, 106 (2013).
- 13. Bruscato, N.M. *et al.* Dietary intake is not associated to the metabolic syndrome in elderly women. *N Am J Med Sci* 2, 182-188 (2010).
- Carnethon, M.R. *et al.* Risk factors for the metabolic syndrome: the Coronary Artery Risk Development in Young Adults (CARDIA) study, 1985-2001. *Diabetes Care* 27, 2707-2715 (2004).
- 15. Eilat-Adar, S. *et al.* Sex may modify the effects of macronutrient intake on metabolic syndrome and insulin resistance in American Indians: the strong heart study. *J Am Diet Assoc* **108**, 794-802 (2008).
- 16. Cabello-Saavedra, E. et al. Macronutrient intake and metabolic syndrome in subjects at high cardiovascular risk. Ann Nutr Metab 56, 152-159 (2010).
- 17. Kwasniewska, M., Kaleta, D., Dziankowska-Zaborszczyk, E. & Drygas, W. Healthy behaviours, lifestyle patterns and sociodemographic determinants of the metabolic syndrome. *Cent Eur J Public Health* **17**, 14-19 (2009).
- Skilton, M.R., Laville, M., Cust, A.E., Moulin, P. & Bonnet, F. The association between dietary macronutrient intake and the prevalence of the metabolic syndrome. *Br J Nutr* 100, 400-407 (2008).
- 19. Mirmiran, P., Noori, N. & Azizi, F. A prospective study of determinants of the metabolic syndrome in adults. *Nutr Metab Cardiovasc Dis* **18**, 567-573 (2008).
- 20. Motamed, S. et al. Micronutrient intake and the presence of the metabolic syndrome. N Am J Med Sci 5, 377-385 (2013).
- Prasad, D.S., Kabir, Z., Dash, A.K. & Das, B.C. Prevalence and risk factors for metabolic syndrome in Asian Indians: A community study from urban Eastern India. J Cardiovasc Dis Res 3, 204-211 (2012).
- Reppert, A., Steiner, B.F. & Chapman-Novakofski, K. Prevalence of metabolic syndrome and associated risk factors in Illinois. *Am J Health Promot* 23, 130-138 (2008).

Supplementary Table S2. Characteristics of included cross-sectional (N=15) and case-control (N=1) studies on dairy products consumption and MetS.

Study	Dataset	Participants	Type of	Comparison	OR (95% CI)	Dairy assessment	MetS assessment	Variables accounted for
	(Country)		dairy					
Mennen, 2000 ¹	DESIR	4976 M/F aged	Dairy	>4 vs.≤1portions/d	M:	Self-administered	≥ 2 of the 4	Age, WHP, smoking, and intakes of energy and
	(France)	30-64 yr			0.63 (0.40-0.99)	FFQ	components: high	alcohol.
					F:		fasting glucose, high	
					0.76 (0.47-2.66)		triglycerides, high BP,	
							low HDL cholesterol.	
Lawlor, 2005 ²	BWHHS	4024 F aged	Milk	Drinker vs.	1.82 (1.06-3.03)	Self-administered	Modified WHO	Age, physical activity, smoking, dietary characteristics,
	(UK)	60-79yr		non-drinker		FFQ	definition	and 10 indicators of socioeconomic position.
Azadbakht, 2005 ³	TLGS	827 M/F aged	Dairy	≥3.1 vs.<1.7 ser/d	0.82 (0.63-0.99)	Interview-based	NCEP ATP- II	Age, BMI, physical activity, smoking, use of BP and
	(Iran)	18-74 yr				FFQ		oestrogen medication, and intakes of energy, fat,
								calcium and protein.
Liu, 2005 ⁴	WHS	10066 F aged≥	Dairy	>3.0 vs.<0.91 ser/d	0.66 (0.55-0.80)	Self-administered	Modified NCEP	Age, smoking, physical activity, multivitamin use,
	(USA)	45yr				FFQ	ATP-III	parental history of MI, glycemic load, and intakes of
								total energy, alcohol, total fat, cholesterol and protein.
Elwood, 2007 ⁵	Caerphilly cohort	2375 M aged	Milk	>1pint/d vs. little or	0.38 (0.18-0.78)	Self-administered	Modified WHO	Age, smoking, energy intake and social class.
	(UK)	45-59 yr		none.		FFQ	definition	
Ruidavets, 2007 ⁶	French MONICA	912 M aged	Dairy	Q5 vs. Q1	0.64 (0.37-1.09)	Food diary	NCEP ATP-II	Age, smoking, physical activity, education, center,
	centers	45-64yr		(median intake:175				dieting, drugs for hypertension and dyslipidaemia,
	(France)			g/d)				intakes of energy and alcohol, and diet quality index.
Snijder, 2007 ⁷	Hoorn Study	2064 M/F aged	Dairy	≥5.57 vs.≤2.90 ser/d	1.01 (0.74-1.39)	Self-administered	NCEP ATP-Ⅲ	Age, sex, physical activity, smoking, education,
	(the Netherlands)	50-75 yr				FFQ		income, antihypertensive medication use, and intakes
								of energy, alcohol and fiber.
Beydoun, 2008 ⁸	NHANES	4519 M/F aged	Dairy	Each 1 ser/d	1.05 (0.97-1.14)	Self-administered	NCEP ATP-Ⅲ	Age, sex, and physical activity, ethnicity,
	(USA)	≥18yr				FFQ		socioeconomic status, and energy intake,.
Shin, 2009 ⁹	National Cancer	5337 M aged≥	Dairy	>1ser/d vs.<2-3	0.92 (0.75-1.12)	Self-administered	Modified NCEP	Age, smoking, physical activity and family history of
	Center	30yr		ser/mo		FFQ	ATP-III	T2D.
	(Korea)							
Troy, 2010 ¹⁰	Framingham	3104 M/F, age	Dairy	>3.0 vs.<0.4 ser/d	0.78 (0.60-0.99)	N.R	N.R	Age, sex, smoking, and intakes of energy and alcohol.
(abstract)	Offspring Study	N.R						
	(USA)							

Zhang, 2010 ¹¹	Communities in	459 M/F aged	Dairy	M:	0.51 (0.16-1.68)	Interview-based	IDF	Age, sex, smoking, education, income, marital status,
(in Chinese)	Guangzhou Municipal	40-79 yr		128 vs. 0 ml/d;		FFQ		and intakes of energy, meat, egg, fruit, vegetable, and
	People's Street			F:				soy products.
	(China)			219 vs. 0 ml/d				
Kwon, 2010 ¹²	KNHANES III	4890 M/F aged	Milk	≥ 1 ser/d vs. rarely	0.85 (0.68-1.06)	Interview-based	Modified NCEP	Age, sex, BMI, smoking, physical activity, education,
	(Korea)	47.1 yr				FFQ	ATP-Ⅲ	and intakes of energy, alcohol and fiber.
de Oliveira, 2012 ¹³	Move for Health	305 M/F aged	Dairy	≥3 vs.<3 ser/d	1.6 (0.64-4.03)	Self-administered	Modified NCEP	Age, sex, BMI, and energy intake.
	program	54.2 (cases) or				FFQ	ATP-Ⅲ	
	(Brazil)	55.8 (non-cases)						
		yr						
Hosseinpour-Niazi, 2013 ¹⁴	Subjects consulting	320 M/F aged	Dairy	\geq 5.7 vs. \leq 3.1 ser/d	0.6 (0.2-0.9)	Interview-based	NCEP ATP-III	Age, sex, BMI, smoking, physical activity, education,
(in Persian, case-control)	health problems in a	41.3 yr				FFQ		and intakes of energy, cholesterol and fiber.
	hospital							
	(Iran)							
Mosley, 2013 ¹⁵	2009 UP AMIGOS	339 M/F aged	Dairy	\geq 3 vs.<3 ser/d	0.34 (0.12-1.00)	Self-administered	IDF/AHA joint criteria	Age, sex, physical activity, family history of CVD and
	cohort	18-25 yr				FFQ		T2DM, and energy intake.
	(Mexico)							
Sadeghi, 2014 ¹⁶	IHHP	1752 M/F with a	Cheese	\geq 7 vs.<7 ser/wk	0.81 (0.71-0.94)	Interview-based	Modified NCEP	Age, sex, BMI, physical activity, dietary index, and
	(Iran)	mean age of 37.8				FFQ	ATP-III	intakes of oil, grain, pulses, fruit and vegetable, meat,
		yr (<7 ser/wk) or						and dairy.
		39.1yr (≥7 ser/						
		wk)						

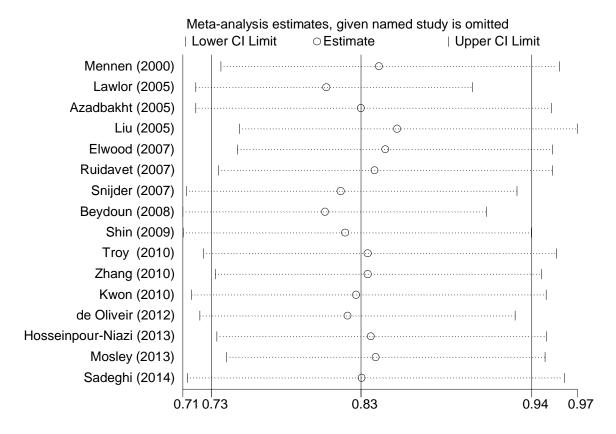
AHA, American Heart Association; BMI, body mass index; BP, blood pressure; BWHHS, British Women's Heart and Health Study; CI, confidence interval; d, day; CVD, cardiovascular diseases; DESIR, Data from an Epidemiological Study on the Insulin Resistance syndrome; F, females; FFQ, food frequency questionnaire; IDF, International Diabetes Federation; mo, month; IHHP, Isfahan Health Heart Program; KNHANES, Korea National Health and Nutrition Examination Survey; M, males; MI, myocardial infarction; MetS, metabolic syndrome; NCEP ATP-III, Adult Treatment Panel III of the National Cholesterol Education Program; NHANES, National Health and Nutrition Examination Survey; N.R., not reported; OR, odds ratio; RR, relative risk; ser, servings; TLGS, Tehran Lipid and Glucose Study; T2DM, type 2 diabetes; UP AMIGOS, Universities of San Luis Potosí and Illinois: A Multidisciplinary Investigation on Genetics, Obesity, and Social-Environment; WHS, Women's Health Study; wk, week; WHO, World Health Organization; WHP, waist-hip ratio; yr, years.

- 1. Mennen, L.I. et al. Possible protective effect of bread and dairy products on the risk of the metabolic syndrome. Nutr Res 20, 335-347 (2000).
- Lawlor, D.A., Ebrahim, S., Timpson, N. & Davey Smith, G. Avoiding milk is associated with a reduced risk of insulin resistance and the metabolic syndrome: findings from the British Women's Heart and Health Study. *Diabet Med* 22, 808-811 (2005).
- 3. Azadbakht, L., Mirmiran, P., Esmaillzadeh, A. & Azizi, F. Dairy consumption is inversely associated with the prevalence of the metabolic syndrome in Tehranian adults. *Am J Clin Nutr* 82, 523-530 (2005).
- 4. Liu, S. et al. Dietary calcium, vitamin D, and the prevalence of metabolic syndrome in middle-aged and older U.S. women. Diabetes Care 28, 2926-2932 (2005).
- 5. Elwood, P.C., Pickering, J.E. & Fehily, A.M. Milk and dairy consumption, diabetes and the metabolic syndrome: the Caerphilly prospective study. J Epidemiol Community Health 61, 695-698 (2007).
- 6. Ruidavets, J.B. et al. High consumptions of grain, fish, dairy products and combinations of these are associated with a low prevalence of metabolic syndrome. J Epidemiol Community Health 61, 810-817 (2007).
- 7. Snijder, M.B. et al. Is higher dairy consumption associated with lower body weight and fewer metabolic disturbances? The Hoorn Study. Am J Clin Nutr 85, 989-995 (2007).
- 8. Beydoun, M.A. et al. Ethnic differences in dairy and related nutrient consumption among US adults and their association with obesity, central obesity, and the metabolic syndrome. Am J Clin Nutr 87, 1914-1925 (2008).
- 9. Shin, A., Lim, S.Y., Sung, J., Shin, H.R. & Kim, J. Dietary intake, eating habits, and metabolic syndrome in Korean men. J Am Diet Assoc 109, 633-640 (2009).
- 10. Troy, L.M., Jacques, P.F., Vasan, R.S. & McKeown, N.M. Dairy intake not associated with metabolic syndrome but milk and yogurt intake is inversely associated with prevalence of hypertension in middle-aged adults. *FASEB Journal* 24 (conference abstract) (2010).
- 11. Zhang, B. et al. Cross-sectional Study on Relationship between Dairy Consumption and Metabolic Syndrome. J SUN Yat-sen Univ (Med Sci) 31 582-587 (in Chinese) (2010).
- 12. Kwon, H.T. et al. Milk intake and its association with metabolic syndrome in Korean: analysis of the third Korea National Health and Nutrition Examination Survey (KNHANES III). J Korean Med Sci 25, 1473-1479 (2010).
- 13. de Oliveira, E.P., McLellan, K.C., Vaz de Arruda Silveira, L. & Burini, R.C. Dietary factors associated with metabolic syndrome in Brazilian adults. Nutr J 11, 13 (2012).
- 14. Hosseinpour-Niazi, S., Mirmiran, P., Ejtahed, H., Nakhoda, K. & Azizi, F. Food groups, inflammatory markers and the metabolic syndrome in adults. *Iran J Endocrinol Metab* 15, 340-351 (in Persian) (2013).
- 15. Mosley, M.A., Andrade, F.C., Aradillas-Garcia, C. & Teran-Garcia, M. Consumption of Dairy and Metabolic Syndrome Risk in a Convenient Sample of Mexican College Applicants. Food and Nutrition Sciences 4, 56 (2013).
- 16. Sadeghi, M. et al. Cheese consumption in relation to cardiovascular risk factors among Iranian adults- IHHP Study. Nutr Res Pract 8, 336-341 (2014).

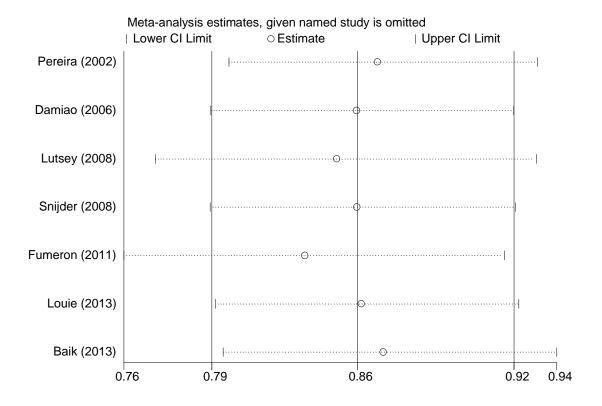
Study	Dataset	Duration,	Participants	Type of	Comparison	RR (95% CI)	Dairy assessment	MetS assessment	Variables accounted for
	(Country)	yr		dairy					
Pereira, 2002 ¹	CARDIA	10	3157 M/F aged	Dairy	≥35 vs. 0-10	BMI≥25:	Food diary	≥ 2 of the 4	Age, sex, BMI, smoking, race, center, education,
	(USA)		18-30 yr		ser/wk	0.38 (0.17-0.83)		components: abnormal	physical activity, vitamin supplement, and intakes of
						BMI<25:		glucose homeostasis,	energy, alcohol, polyunsaturated fat, caffeine, dietary
						0.72 (0.39-1.34)		obesity, elevated BP,	fiber, whole and refined grains, meat, fruit, vegetables,
								and dyslipid.	magnesium, calcium, and vitamin D.
Damiao, 2006 ²	JBDS	7	151 M/F aged	Milk	223.7 vs. 12.4 g/d	0.93 (0.28-3.00)	Self-administered	Modified NCEP	Age, sex, physical activity, smoking, education, and
	(Japan)		40-79 yr				FFQ	ATP-Ⅲ	intakes of alcohol, energy, fat, and fried foods.
Lutsey, 2008 ³	ARIC	9	9514 M/F aged	Dairy	3.30 vs. 0.28 ser/d	0.87 (0.77-0.98)	Interview-based	AHA guidelines	Age, sex, smoking, physical activity, race, education,
	(USA)		45-64 yr				FFQ		center, and intakes of energy, meat, fruit, vegetables,
								whole grains, and refined grains.	
Snijder, 2008 ⁴	Hoorn Study	6.4	885 M/F aged	Dairy	≥5.75 vs. ≤2.97	0.86 (0.52-1.42)	Self-administered	NCEP ATP-III	Age, sex, smoking, physical activity, and intakes of
	(the Netherland)		50-75 yr		ser/d		FFQ		energy and alcohol.
Fumeron, 2011 ⁵	DESIR	9	3435 M/Faged	Dairy	>2 vs.<1 ser/d	IDF:	Self-administered	IDF, NCEP ATP-Ⅲ	Age, sex, BMI, smoking, physical activity, and fat
	(France)		30-65 yr	(except		0.88 (0.79-0.97)	FFQ		intake.
				cheese)		NCEP ATP-Ⅲ:			
						0.89 (0.79-1.00)			
Louie, 2013 ⁶	BMES	10	1824 M/F aged	Dairy	3.1 vs. 0.5 ser/d	0.62 (0.24-1.62)	Self-administered	Modified IDF	Age, sex, Smoking, physical activity, dietary glycemic
	(Australia)		≥49 yr				FFQ	definition	load, family history of T2D, and intakes of energy,
									fiber from vegetables, and calcium.
Baik, 2013 ⁷	KoGES	6	5251 M/F aged	Dairy	1.6 vs. 0 ser/d	0.80 (0.66-0.96)	Interview-based	Modified NCEP	Age, sex, smoking, physical activity, income,
	(Korea)		40-69 yr				FFQ	ATP-III	occupation, education, study sites, FTO genotypes, and
									intakes of alcohol, energy, refined grains and starches,
									mixed grain rice and cereal, fish and seafood, red meat
									and processed meat, poultry, eggs, legumes, nuts, fruit
									and vegetable, sweetened carbonated beverage, green
									tea, and coffee.

Supplementary Table S3. Characteristics of included prospective cohort studies (N=7) on dairy products consumption and MetS.

AHA, American Heart Association; ARIC, Atherosclerosis Risk in Communities; BMES, Blue Mountains Eye Study; BMI, body mass index; CARDIA, Coronary Artery Risk Development in Young Adults; CI, confidence interval; d, day; DESIR, Data from an Epidemiological Study on the Insulin Resistance syndrome; F, Females; FFQ, food frequency questionnaire; IDF, International Diabetes Federation; MetS, metabolic syndrome; JBDS, Japanese-Brazilian Diabetes Study; KoGES, Korean Genome Epidemiology Study; M, males; NCEP ATP, Adult Treatment Panel III of the National Cholesterol Education Program; RR, relative risk; ser, servings; yr, years.


- 1. Pereira, M.A. et al. Dairy consumption, obesity, and the insulin resistance syndrome in young adults: the CARDIA Study. JAMA 287, 2081-2089 (2002).
- 2. Damiao, R., Castro, T.G., Cardoso, M.A., Gimeno, S.G. & Ferreira, S.R. Dietary intakes associated with metabolic syndrome in a cohort of Japanese ancestry. Br J Nutr 96, 532-538 (2006).
- 3. Lutsey, P.L., Steffen, L.M. & Stevens, J. Dietary intake and the development of the metabolic syndrome: the Atherosclerosis Risk in Communities study. Circulation 117, 754-761 (2008).
- 4. Snijder, M.B. et al. A prospective study of dairy consumption in relation to changes in metabolic risk factors: the Hoorn Study. Obesity (Silver Spring) 16, 706-709 (2008).
- 5. Fumeron, F. *et al.* Dairy consumption and the incidence of hyperglycemia and the metabolic syndrome: results from a french prospective study, Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). *Diabetes Care* **34**, 813-817 (2011).
- 6. Louie, J.C. et al. Higher regular fat dairy consumption is associated with lower incidence of metabolic syndrome but not type 2 diabetes. Nutr Metab Cardiovasc Dis 23, 816-821 (2013).
- 7. Baik, I., Lee, M., Jun, N.R., Lee, J.Y. & Shin, C. A healthy dietary pattern consisting of a variety of food choices is inversely associated with the development of metabolic syndrome. *Nutr Res Pract* 7, 233-241 (2013).

		Reported results								
Study	Country	Cheese	Yogurt	Butter	High-fat dairy	Low-fat dairy				
Cross-sectional studies										
Liu, 2005 ¹	USA	None	None	None	High-fat dairy (high vs. low):	Low-fat dairy (high vs. low):				
					OR=0.71 (95% CI=0.58-0.87)	OR=0.78 (95% CI=0.64-0.95)				
Beydoun, 2008 ²	USA	Per 1 ser/d: OR=1.16	Per 1 ser/d: OR=0.40	None	Whole milk (per 100 g/d):	Low fat milk (per 100 g/d):				
		(95% CI=1.04-1.29)	(95% CI=0.18-0.89)		OR=0.98 (95% CI=0.90-1.07)	OR=1.02 (95% CI=0.97-1.06)				
Mosley, 2013 ³	Mexico	High vs low: OR=0.59	None	None	Whole milk (high vs. low):	None				
		(95% CI=0.29-1.43)			OR=0.63 (95%CI=0.29-1.25)					
Sadeghi, 2014 ⁴	Iran	High vs low: OR=0.81	None	None	None	None				
		(95% CI=0.71-0.94)								
Cohort studies										
Pereira, 2002 ⁵	USA	None	Per 1 ser/d: RR=0.58	Per 1 ser/d: RR=0.90	None	None				
			(95% CI=0.20-1.66)	(95% CI=0.76-1.05)						
Fumeron, 2011 ⁶	France	High vs low: RR=0.82	None	None	None	None				
		(95% CI=0.71-0.95)								
Louie, 2013 ⁷	Australia	None	None	None	Regular fat dairy (high vs. low):	Regular/low fat dairy (high vs. low)				
					RR=0.39 (95% CI=0.22-0.70)	RR=2.01 (95% CI=1.05-3.83)				


Supplementary Table S4. Studies reporting results for the association between individual dairy products and MetS.

CI, confidence interval; MetS, metabolic syndrome; OR, odds ration; RR, relative risk.

- 1. Liu, S. et al. Dietary calcium, vitamin D, and the prevalence of metabolic syndrome in middle-aged and older U.S. women. Diabetes Care 28, 2926-2932 (2005).
- 2. Beydoun, M.A. et al. Ethnic differences in dairy and related nutrient consumption among US adults and their association with obesity, central obesity, and the metabolic syndrome. Am J Clin Nutr 87, 1914-1925 (2008).
- 3. Mosley, M.A., Andrade, F.C., Aradillas-Garcia, C. & Teran-Garcia, M. Consumption of Dairy and Metabolic Syndrome Risk in a Convenient Sample of Mexican College Applicants. Food and Nutrition Sciences 4, 56 (2013).
- 4. Sadeghi, M. et al. Cheese consumption in relation to cardiovascular risk factors among Iranian adults- IHHP Study. Nutr Res Pract 8, 336-341 (2014).
- 5. Pereira, M.A. et al. Dairy consumption, obesity, and the insulin resistance syndrome in young adults: the CARDIA Study. JAMA 287, 2081-2089 (2002).
- Fumeron, F. *et al.* Dairy consumption and the incidence of hyperglycemia and the metabolic syndrome: results from a french prospective study, Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR).
 Diabetes Care 34, 813-817 (2011).
- 7. Louie, J.C. et al. Higher regular fat dairy consumption is associated with lower incidence of metabolic syndrome but not type 2 diabetes. Nutr Metab Cardiovasc Dis 23, 816-821 (2013).

Supplementary Figure S1. Sensitivity analysis for cross-sectional/case-control studies, omitting one at a time with the remaining studies pooled.

Supplementary Figure S2. Sensitivity analysis for prospective cohort studies, omitting one at a time with the remaining studies pooled.