Supplemental material

Wenz et al., http://www.jcb.org/cgi/content/full/jcb.201504119/DC1

Figure S1. Steady-state levels of mitochondrial proteins and Porin assembly in sam37 Δ yeast grown at low temperature. (A) Wild-type (WT) and sam37 Δ yeast cells were grown at 19°C. Mitochondria were isolated (microgram, protein amount) and analyzed by SDS-PAGE and immunodetection with the indicated antisera. (B) ³⁵S-labeled Porin was imported into wild-type or sam37 Δ mitochondria for the indicated periods. Mitochondria were solubilized in digitonin and analyzed by blue native electrophoresis and autoradiography.

Figure S2. Characterization of sam37A yeast strains overexpressing Sam35 or Tom6. (A) Serial dilution of cells from wild-type (WT), sam37A, sam37A Sam35[↑], and sam37^Δ Tom6[↑] strains were plated on YPD and YPG media and incubated at the indicated temperatures. (B) Wild-type, sam37^Δ, sam37^Δ Sam35[†], and sam37^Δ Tom6[†] mitochondria (protein amount) were analyzed by SDS-PAGE and immunodetection with the indicated antisera (cells were grown at 19°C). (C) Wild-type, sam37A, sam37A Sam357, and sam37A Tom67 mitochondria were lysed with digitonin and analyzed by blue native electrophoresis and immunodetection with the indicated antisera. SAM₃₅₊₅₀, SAM subcomplex formed by Sam35 and Sam50. (D) Recombinant amounts of HisTom40 were imported into wild-type, sam37∆, and sam37∆ Sam35↑ mitochondria where indicated. Mitochondria were lysed with digitonin and incubated with Ni-NTA agarose. Elution fractions were analyzed by blue native electrophoresis and immunodetection with antiserum directed against Sam50. (E) Wild-type, Tom22_{His}, Tom22_{His} sam37 Δ , Tom22_{His} sam37 Δ Sam35 \uparrow , and Tom22_{His} sam37 Δ Tom6 \uparrow mitochondria were lysed and incubated with Ni-NTA agarose. Proteins in load and elution fractions were monitored by SDS-PAGE and immunodetection with the indicated antisera. Load, 3%; elution, 100%.

Table S1. S. cerevisiae strains used in this study

Strain	Genotype	Number	Reference
YPH499 WT	MATa ade2-101 his3-4200 leu2-41 ura3-52 trp1-463 lys2-801	1,501	Sikorski and Hieter, 1989
sam 37Δ	MATa ade2-101 his3-∆200 leu2-∆1 ura3-52 trp1-∆63 lys2-801 sam37::LEU2	1,271	Ryan et al., 1999
Tom22 _{His}	MATa ade2-101 his3-Δ200 leu2-Δ1 ura3-52 trp1-Δ63 lys2-801 tom22::TOM22 _{His} -HIS3	1,456	Meisinger et al., 2001
<i>tom22∆</i> Tom22↑	MATa ade2-101 his3-∆200 leu2-∆1 ura3-52 trp1-∆63 lys2-801 tom22::HIS3 pYep352-MET25p-Tom22-CYC1t (2micron, URA3)	2,281	Qiu et al., 2013
Tom22(N55C) _{His}	MATa ade2-101 his3-Δ200 leu2-Δ1 ura3-52 trp1-Δ63 lys2-801 tom22::HIS3 pFL39-Tom22(C55) _{His} (CEN, TRP1)	3,855	Qiu et al., 2013
Tom22(K66C) _{His}	MATa ade2-101 his3-Δ200 leu2-Δ1 ura3-52 trp1-Δ63 lys2-801 tom22::HIS3 pFL39-Tom22(K66C) _{His} (CEN, TRP1)	4,177	This study
Tom22(Δ IMS) _{His}	MATa ade2-101 his3-Δ200 leu2-Δ1 ura3-52 trp1-Δ63 lys2-801 tom22::HIS3 pFL39-Tom22(ΔIMS) _{His} (CEN, TRP1)	4,401	This study
Tom22(ΔN) _{His}	MATa ade2-101 his3-Δ200 leu2-Δ1 ura3-52 trp1-Δ63 lys2-801 tom22:: HIS3 pFL39-Tom22(Δ4-54) _{His} (CEN, TRP1)	4,400	This study
$\text{Tom22}_{\text{His}} \text{ sam37} \Delta$	MATa ade2-101 his3-Δ200 leu2-Δ1 ura3-52 trp1-Δ63 lys2-801 sam37::LEU2 tom22::TOM22 _{His} -HIS3	4,237	This study
sam37∆ Sam35↑	MATa ade2-101 his3-Δ200 leu2-Δ1 ura3-52 trp1-Δ63 lys2-801 sam37::LEU2 pRS426-Sam35 (2micron, URA3)	4,759	This study
sam37∆ Tom6↑	MATa ade2-101 his3-v200 leu2-11 ura3-52 trp1-163 lys2-801 sam37::LEU2 pRS426-Tom6 (2micron, URA3)	4,760	This study
WT YPH499 pRS426	MATa ade2-101 his3-Δ200 leu2-Δ1 ura3-52 trp1-Δ63 lys2-801 pRS426 (2micron, URA3)	4,761	This study
Tom22 _{His} pRS426	MATa ade2-101 his3-∆200 leu2-∆1 ura3-52 trp1-∆63 lys2-801 tom22::TOM22 _{His} -HIS3 pRS426 (2micron, URA3)	4,762	This study
Tom22 _{His} sam37∆ Sam35↑	MATa ade2-101 his3-∆200 leu2-∆1 ura3-52 trp1-∆63 lys2-801 sam37::LEU2 tom22::TOM22 _{His} -HIS3 pRS426-Sam35 (2micron, URA3)	4,763	This study
Tom22 _{His} sam37∆ Tom6↑	MATa ade2-101 his3-∆200 leu2-∆1 ura3-52 trp1-∆63 lys2-801 sam37::LEU2 tom22::TOM22 _{His} -HIS3 pRS426-Tom6 (2micron, URA3)	4,764	This study

WT, wild type.

Table S2. List of antibodies (rabbit antisera) used in this study

Antibodies directed against	Dilution	Number
S. cerevisiae Atp4 (LQQSISEIEQLLSKLK)	1:1,000 TBS + 5% milk	GR1970-5
S. cerevisiae Cox4 (ARLELLGKLEGIDVFDTKP)	1:1,000 TBS + 5% milk	GR 578-4
E. coli GroEL (isolated full-length protein; antiserum detects S. cerevisiae Hsp60)	1:1,000 TBS-T + 5% milk	170 (60)
S. cerevisiae Mia40 (purified full-length protein)	1:1,000 TBS + 5% milk	315-7
S. cerevisiae mtHsp70 (purified full-length protein)	1:2,000 TBS + 5% milk	119-3 (39)
S. cerevisiae Om14 (LDGIISKKYYSRYDKK)	1:4,000 TBS + 5% milk	GR 3040-6
S. cerevisiae Sam35 (KELVQFAQDTLKNFVQ)	1:100 TBS (affinity purified antibodies)	551-7
S. cerevisiae Sam37 (SNNLEQRDPQFRE)	1:50 TBS (affinity purified antibodies)	161-8
S. cerevisiae Sam50 (purified protein comprising AA 1–174)	1:50 TBS + 0.1% Tween (affinity purified antibodies)	312-17
S. cerevisiae Tim10 (GENMQKMGQSFNAAGKF)	1:250 TBS + 5% milk	GR 2040-4
S. cerevisiae Tom5 (MFGLPQQEVSEE)	1:500 TBS + 5% milk	GR 3419-10
S. cerevisiae Tom7 (purified full-length protein)	1:250 TBS + 5% milk	230-10
S. cerevisiae Tom20 (purified protein comprising AA 32–183)	1:10,000 TBS + 5% milk	GR 3225-7
S. cerevisiae Tom22 (purified protein comprising AA 1–97)	1:10,000 TBS + 5% milk	GR 3227-2
S. cerevisiae Tom40 (purified full-length protein)	1:500 TBS + 5% milk	168-5
S. cerevisiae Tom70 (purified protein comprising AA 247–390)	1:500 TBS + 5% milk	GR 657-3

References

Meisinger, C., M.T. Ryan, K. Hill, K. Model, J.H. Lim, A. Sickmann, H. Müller, H.E. Meyer, R. Wagner, and N. Pfanner. 2001. Protein import channel of the outer mitochondrial membrane: a highly stable Tom40-Tom22 core structure differentially interacts with preproteins, small tom proteins, and import receptors. *Mol. Cell. Biol.* 21:2337–2348. http://dx.doi.org/10.1128/MCB.21.7.2337-2348.2001

Qiu, J., L.S. Wenz, R.M. Zerbes, S. Oeljeklaus, M. Bohnert, D.A. Stroud, C. Wirth, L. Ellenrieder, N. Thornton, S. Kutik, et al. 2013. Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. *Cell*. 154:596–608. http://dx.doi.org/10.1016/j.cell.2013.06.033

Ryan, M.T., H. Müller, and N. Pfanner. 1999. Functional staging of ADP/ATP carrier translocation across the outer mitochondrial membrane. J. Biol. Chem. 274:20619–20627. http://dx.doi.org/10.1074/jbc.274.29.20619

Sikorski, R.S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in *Saccharomyces cerevisiae*. *Genetics*. 122:19–27.