Supplementary Material

Forebrain microglia from wild-type but not adult 5xFAD mice prevent amyloid-β plaque formation in organotypic hippocampal slice cultures

Sabine Hellwig, MD^{1*}, Annette Masuch, PhD^{1*}, Sigrun Nestel², Natalie Katzmarski³

Melanie Meyer-Luehmann, PhD³, Knut Biber, PhD^{1,4,#}

¹Department of Psychiatry and Psychotherapy, ²Department of Neuroanatomy, ³Department of Neurology, University of Freiburg, Freiburg, Germany. ⁴Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

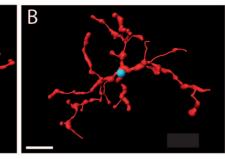
* These authors contributed equally to the study.

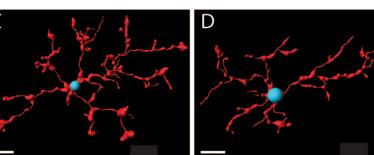
Figure Legends

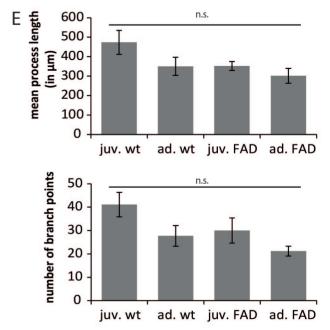
Supplementary Figure 1 Morphological comparison of replenished microglia isolated from the forebrain of juvenile or young adult wild type or 5xFAD mice. Single cell 3D reconstruction of replenished Iba1-labeled microglia isolated from 5-week- (A, C) or 6-month-old (B, D) mice. Comparison of morphometric parameters "number of branch points" and "total process length" (E, n=10 cells from 3 different OHSC per group) illustrated comparable levels of ramification. Scale bar: 10 μm.

Supplementary Figure 2 Analysis of synthetic amyloid β_{1-42} preparations. (A) Analysis by dot blot revealed A11 immunoreactivity only in the brain homogenate of a plaque-containing 5XFAD mouse and no A11 immunoreactivity in the unlabelled nor labeled synthetic A β preparation. Conversely, OC immunoreactivity was seen in synthetic A β preparations, indicating the presence of fibrillary material in the used A β solutions. (B)These findings were confirmed by EM experiments were several fibrils were seen in FAM-labeled A β_{1-42} solution. Asterisks mark single fibrils. Scale bar: 250 nm.

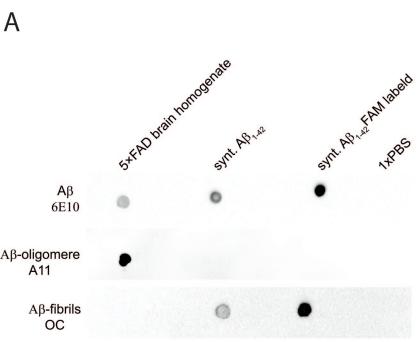
5xFAD

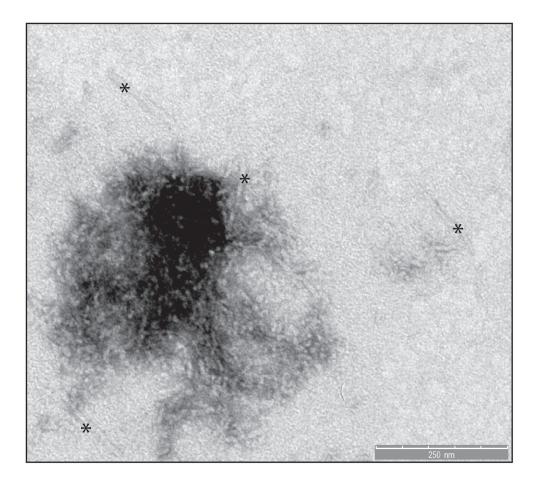

wild type


Supplementary Figure 1


juvenile

А


young adult



Supplementary Figure 2

