

LC-MS/MS analysis of flavone-derived metabolites in maize pericarps (14 DAP) and silks expressing or not the *P1* gene (*P1-rr* and *P1-ww*). (A, B) Representative ion chromatograms for molecular ions of m/z = 271 and 287 corresponding to apigenin and luteolin, respectively; detected in pericarps (A) and silks (B) expressing or not the P1 gene. (C) Representative ion chromatograms for molecular ions of m/z = 433 corresponding to apigenin *O*-hexoside detected in silks. (D) MS/MS fragmentation profile of apigenin *O*-hexoside detected in (C). (E) Representative ion chromatograms for molecular ions of m/z = 449 corresponding to luteolin *O*-hexosides detected in pericarps expressing the *P1* gene. (F, G) MS/MS fragmentation profiles of luteolin *O*-hexosides detected in (D).

Supplemental Fig. S2

1	Λ	
ŀ	Η.	
•	•	

ZmFNSI-1 Os10g39140 Os03g03034 AtDMR6	MAEHLLST-AVHDTLPGSYVRPEPERPRLAEVVTGARIPVVDLGSPDRGAVVAA MAAEAEQQHQLLST-AVHDTMPGKYVRPESQRPRLDLVVSDARIPVVDLASPDRAAVVSA MADQLIST-ADHDTLPGNYVRPEAQRPRLADVLSDASIPVVDLANPDRAKLVSQ MAAKLISTGFRHTTLPENYVRPISDRPRLSEVSQLEDFPLIDLSSTDRSFLIQQ :*:** * *:* .**** .:**** * :*::****	53 59 53 54
ZmFNSI-1 Os10g39140 Os03g03034 AtDMR6	VGDACRSHGFFQVVNHGIHAALVAAVMAAGRGFFRLPPEEKAKLYSDDPARKIRLSTSFN VGDACRTHGFFQVVNHGIDAALIASVMEVGREFFRLPAEEKAKLYSDDPAKKIRLSTSFN VGAACRSHGFFQVLNHGVPVELTLSVLAVAHDFFRLPAEEKAKLYSDDPAKKIRLSTSFN IHQACARFGFFQVINHGVNKQIIDEMVSVAREFFSMSMEEKMKLYSDDPTKTTRLSTSFN : ** .*****: : : :: .: ** : ********	113 119 113 114
ZmFNSI-1 Os10g39140 Os03g03034 AtDMR6	VRKETVHNWRDYLRLHCHPLDEFLPDWPSNPPDFKETMGTYCKEVRELGFRLYAAISESL VRKETVHNWRDYLRLHCYPLHQFVPDWPSNPPSFKEIIGTYCTEVRELGFRLYEAISESL VRKETVHNWRDYLRLHCYPLHRYLPDWPSNPPSFREIISTYCKEVRELGFRLYGAISESL VKKEEVNNWRDYLRLHCYPIHKYVNEWPSNPPSFKEIVSKYSREVREVGFKIEELISESL *:** *:*******************************	173 179 173 174
ZmFNSI-1 Os10g39140 Os03g03034 AtDMR6	GLEASYMKEALGEQEQHMAVNFYPPCPEPELTYGLPA HTD PNALTILLMDPDVAGLQVLH GLEGGYMRETLGEQEQHMAVNYYPQCPEPELTYGLPA HTD PNALTILLMDDQVAGLQVLN GLEQDYIKKVLGEQEQHMAVNFYPKCPEPELTFGLPA HTD PNALTILLMDQQVAGLQVLK GLEKDYMKKVLGEQGQHMAVNYYPPCPEPELTYGLPA HTD PNALTILLQDTTVCGLQILI *** .*::::**** ******:** *******:	233 239 233 234
ZmFNS1 Os10g39140 Os03g03034 AtDMR6	AGQWVAVNPQPGALIINIGDQLQALSNGQYRSVW H RAVVNSDRE R MSVASFLCPCNHVVL DGKWIAVNPQPGALVINIGDQLQALSNGKYRSVW H RAVVNSDRE R MSVASFLCPCNSVEL EGRWIAVNPQPNALVINIGDQLQALSNGRYKSVW H RAVVNSDKA R MSVASFLCPCNDVLI DGQWFAVNPHPDAFVINIGDQLQALSNGVYKSVW H RAVTNTENP R LSVASFLCPADCAVM *:*.****:*.*::*:**********	293 299 293 294
ZmFNSI-1 Os10g39140 Os03g03034 AtDMR6	GPARKLVTEDTPAVYRNYTYDKYYAKFWSRNLDQEHCLELFRT 336 GPAKKLITDDSPAVYRNYTYDEYYKKFWSRNLDQEHCLELFRT 342 GPAQKLITDGSPAVYRNYTYDEYYKKFWSRNLDQEHCLELFRTTPTDTS 342 SPAKPLWEAEDDETKPVYKDFTYAEYYKKFWSRNLDQEHCLENFLNN 341 .**: * : .**:::** :** ********** * .	
В		
PcFNS AgFNS DcFNS CcFNS ZmFNSI-1	MAPTTITALAKEKTLNLDFVRDEDERPKVAYNQFSNEIPIISLAGLDDDSDGRRPEICRK MAPSTITALSQEKTLNLDFVRDEDERPKVAYNQFSNEVPIISLAGLDDDSNGRRAEICRK MAPTTITALAKEKTLNSDFVRDEDERPKVAYNQFSTEIPIISLAGIDDDSNGRRPEVCRK MAPTTITALAQEKTLNSDFVRDEDERPKVAYNQFSTEIPIISLAGIDDDSKGRRPEVCRK -MAEHLLSTAVHDTLPGSYVRPEPERPRLAEVVTGARIPVVDLGSPDRGAVVAA . : : :** .:** * ***::*:*:* * * :	60 60 60 53
PcFNS AgFNS DcFNS CcFNS ZmFNSI-1	IVKACEDWGIFQVVDHGIDSGLISEMTRLSREFFALPAEEKLEYDTTG-GKRGGFTISTV IVEAFEEWGIFQVVDHGIDSGLISEMSRLSREFFALPAEEKLVYDTTG-EKKGGFTISTH IVEAFEDWGIFQVVDHGIDSGLIAEMSRLSREFFALPAEEKLRYDTTG-GKRGGFTISTH IVEAFEDWGIFQVVDHGVDSALISEMSRLSREFFALPAEEKLRYDTTG-GKRGGFTISTH VGDACRSHGFFQVVNHGIHAALVAAVMAAGRGFFRLPPEEKAKLYSDDPARKIRLSTSFN : .* *:****:**::: .* :* ** **.*** :. :: :: *	119 119 119 119 113
PcFNS AgFNS DcFNS CcFNS ZmFNSI-1	LQGDDAMDWREFVTYFSYPINARDYSRWPKKPEGWRSTTEVYSEKLMVLGAKLLEVLSEA LQGDDVRDWREFVTYFSYPISARDYSRWPKKPEGWRSTTEVYSEKLMVLGAKLLEVLSEA LQGDDVKDWREFVVYFSYPVDARDYSRCPDKPEGWRSVTEVYSEKLMALGAKLLEVLSEA QQGDDVRDWREFVTYFSYPVDARDYSRWPEKPEGWRSVTEVYSEKLMVLGAKLLEVLSEA VRKETVHNWRDYLRLHCHPLDEFLP-DWPSNPPDFKETMGTYCKEVRELGFRLYAAISES : : . :**::::*: *:: *:: *:: *::: *:	179 179 179 179 179
PCFNS AgFNS DCFNS CCFNS ZmFNSI-1	MGLEKGDLTKACVDMEQKVLINYYPTCPQPDLTLGVRRHTDPGTITILLQD-MVGGLQAT MGLEKEALTKACVEMEQKVLINYYPTCPEPDLTLGVRRHTDPGTITILLQD-MVGGLQAT MGLEKEALTEACVNMEQKVLINYYPTCPQPDLTLGVRRHTDPGTITILLQD-MVGGLQAT MGLDKGALTKACVNMEQKVLINYYPTCPEPDLTLGVRRHTDPGTITILLQD-MVGGLQAT	238 238 238 238 238 232

PcFNS	RDGGKTWITVQPVEGAFVVNLGDHGHYLSNGRFRNAD H QAVVNSTSS R L S IATFQNPAQN 298	
AgFNS	RDGGKTWITVQPVEGAFVVNLGDHGHYLSNGRFRNADHQAVVNSTSTRLSIATFQNPAQN 298	
DcFNS	RDGGKTWITVQPVEGAFVVNLGDHGHYLSNGRFKNADHQAVVNSTSSRLSIATFQNPAQN 298	
CcFNS	RDGGKTWITVQPVEGVFVVNLGDHGHYLSNGRFKNADHQAVVNSTSSRLSIATFQNPAQN 298	
ZmFNSI-1	HAGQWVAVNPQPGALIINIGDQLQALSNGQYRSVW H RAVVNSDRE R MSVASFLCPCNH 290	
	: * *::*:* *.:::*:**: : ****:: *:*****	
PcFNS	AIVYPL-KIREGEKAILDEAITYAEMYKKCMTKHIEVATRKKLAKEKRLQDEKAKLEMKS 357	
AgFNS	AIVYPL-KIREGEKAILDEAITYAEMYKKNMTKHIAVATQKKLAKEKRLQDEKAKMKI 355	
DcFNS	AIVYPL-KIREGEKPILEEAMTYAEMYKKNMTKHIEVATQKKLAKEKRLQNEKAKLETKF 357	
CcFNS	AIVYPL-KIREGEKPILEEAITYAEMYKKNMTKHIEVATQKKLAKEKRLQEEKAKLETKT 357	
ZmFNSI-1	VVLGPARKLVTEDTPAVYRNYTYDKYYAKFWSRNLDQEHCLELFRT 336	
	.:: * *: : : . ** : * * :::: :* :	

Amino acid sequences alignment of the predicted *Zm*FNSI-1 with FNS proteins from *O.* sativa and *A. thaliana* plants (A) and *Apiaceae* (B). The sequences were aligned using the Clustal W2 program. Dashes (-) indicate spaces introduced to promote optimal alignment, perfect matches are indicated by an asterisk (*), high amino-acid similarities by double dots (:), and weak similarities by a single dot (·). Amino acids coordinating the ferrous iron and residues participating in 2-oxoglutarate binding are in bold-underlined and bold letters, respectively.

LC-MS analysis of *Zm*FNSI-1 activity products in *E. coli* bioconversion assays using naringenin as a substrate. Fragmentation of the naringenin substrate (A) and apigenin (B) produced by *Zm*FNS1-1. For comparison, the fragmentation patterns of the standards are shown on the middle top. Naringenin and apigenin produced molecular ions of m/z = 273 and 271, respectively.

LC-MS analysis of ZmFNSI-1 activity assayed with eriodictyol as a substrate. (A) Representative ion chromatogram for eriodictyol bioconversion in *E. coli* expressing ZmFNSI-1. The reaction products generated a molecular ion of m/z = 287 corresponding to luteolin, while *E. coli* cells transformed with the empty vector did not show the production of the product. (B) Representative ion chromatogram for eriodictyol bioconversion in *E. coli* expressing *PcFNS* as a positive control. (C). MS/MS fragmentation profile of the product of the *ZmFNSI-1* activity assay. (D) A luteolin standard was used as a control, its MS/MS fragmentation profile corresponds to that of the *ZmFNSI-1* reaction product, which is shown inside the graph.

Presence and expression of the *ZmFNSI-1* transgene in transformed *A. thaliana* plants. (A) Amplification of the *ZmFNSI-1* transgene by PCR on genomic DNA from 15-days-old hygromycin-resistant plants transformed with the p35S::*Zm*FNSI-1 construct (3 lines in Col-0 background (T2.1, T2.2 and T2.3 lines) and 2 lines in *tt6* background (T2.1 and T2.2)). Positive PCR reaction amplified a 734 bp product (35 cycles). DNA from non-transformed Col- 0 and *tt6* mutant plants was used as negative controls for amplifications. Also, the PCR reaction was done without genomic DNA as a different negative control. (B) *ZmFNSI-1* mRNA levels in 15-days-old hygromycin-resistant Arabidopsis lines transformed with p35S::*Zm*FNSI-1 determined by RT-PCR, which amplifies a product of 1008 bp (35 cycles). CBP20 was used as negative controls for amplifications. Also, the RT-PCR reaction was done without template as a different negative control.

Supplemental Figure S6

GAGAGTTTGTGCTTGTCACTCTTGTTGATCGACATCACCTAAACGACTTGGTAGCGACCGAGAGTTTAGTG ATCACCTGTTGAAGATTGTGGATGGTCTAACTAATGCTTAAACGACTACGGGGTAATTCATCGTGCTGGAG AACGAGGACTACTAATTTAGTCTCTAAATTGCCAAATACGAAAATTAAAACTCTATTTTATTTTCTGTATT TGGCAACTCAGTGACTAAAATGAAATAAAATAGATGGACTAAAAATTAGTCCCTAGAAACCAA<mark>ACAACT</mark>CC TTAGTCTATTTTTCCATCAAACGTAGATGGCCTTTAAAAAAGATG<mark>CAACC</mark>TTCTTTAGCCTTATAGAAATA CTATCAACACTAATACTACTGCATTGATTTACGTATGTCTAGATATAGCATGCTTTATAATATGATACTAG AATAAAATATGATAGGACTGGCGGAGGGCAGTAACTTATAGTAATGTAAAGTAAGGAGCAAATTGTGCGGG GTTCGACACATGGAATTGCTTCGTGGTCCCCAATTAGAAAAACATGAAAAATATCCTGGTGTCCCTCCAAAAG CAGAAGGGAAACTCGAGTGTTTGAACAAGCATGGGATGGAATCGATTGGCACACGGCGACTTGGCGAGGAA ACGTTAGCCATCCATTGTGCGAAAAGCTCGCAATCGCAATGCGCCAGATTCTCGAGTAACGAAATCGCGGA TCCACATTCGCCGTGGACCACCGCATACAAT<mark>GGTTGC</mark>TTCCCGTGTACGCCGTCGATACAGCAGAGCACGT GGACGTGGATCTGATTGGACTT<mark>GGTTGG</mark>TGGTGCACCCGACCGATGTTGCGTCGACGAGACATCCTCGCAC GACGGGGAATCCGCCGCTCTGGCAAGCCACTCTGTCATGTGCCTCTTGGATCCTGCGATCCGCCGCTGGAG CGTAACCACCGCGTCCACATGCTGCTTCATTGGTGCCGGCGCGGAGGCTGCTTAGCTCGCCGCCGAGGGAC TACTTTGCCCGCCACGGTTACGGCGTGATGCGGAGGGGGTGGTGACGTCACCGCCACGGCGATGACGC GAGGGGATATCAGTCATCAGTCCACCCAACGACCGCGGGGGGG<mark>TCAACC</mark>TCTTCTCGGTCGTCGTCGCGTCG TCACGGCTGACGCCACGGGCCCGCTGCCTGCCGGAACGCCCACGCCGAGCCACGGCGCAGTCACCACAGA ACCGACCGACCTCCG<mark>TAGGCACGCACGGCGCCGGCGGC</mark>

ZmFNSI-1 promoter sequence from the B73 maize line. The promoter region shown ranges from -1426 to +103 bp. C1/P1 binding sites and E-box are highlighted in red and grey, respectively. The 5'UTR region is indicated in red color. Primers used for PCR are highlighted in yellow.

*In vitro At*DMR6 activity assayed with salicylic acid as a substrate. (A) HPLC profile of purified *His6-At*DMR6 activity assay using salicylic acid as a substrate, the reaction did not generate any hydroxylated product. (B) A negative control using an *E.coli* extract transformed with an empty vector did not show any product. (C) HPLC profile of a salicylic acid standard.

Supplemental Fig. S8 Α 50 — WT UV 1.2 kaempferol tt6 UV apigenin 40 dmr6 UV 1.0 mAU ... m/z = 287.1 0.8 30 0.6 20 ಕ್ಷ 0.4 (cps) 10 0.2 0.0 В 7.0 7.4 8.0 8.2 Time [min] 7.2 7.6 7.8 8.4 35 WT UV ·1.2 _ apigenin kaempferol 30 tt6 UV dmr6 UV 1.0 **N**²⁵ 20 m/z = 287.1 tensi 0.8 20 0.6 15-103 0.4 10-(cps) ·0.2 5 0.0 С 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 Time [min] **(sd**2.5 300 2.0 2.10 2.10 1.5 1.0 250 mAU 'nн 200 Kaempferol 150 100 0.5 -50 -0 D 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 Time [min] 8 _ WT Intensity x10³ (cps) salicylic acid --- dmr6 6 4 2 0 5.5 6.0 6.5 7.0 7.5 Time [min] Е Intensity x10⁴ (cps) 5соон OH 4-Salicylic acid 3-2-1-0

Accumulation of kaempferol, apigenin and salicylic acid in Arabidopsis. (A) UV and ion chromatogram profiles of hydrolyzed flavonoids of cauline leaves from WT, *tt6* and *dmr6* Arabidopsis mutant plants analyzed by LC-MS/MS showing the molecular ion of m/z = 287 in WT and *dmr6* mutant plants that corresponds to kaempferol. The peak at 7.35 min that corresponds to apigenin is also indicated. (B) UV and ion chromatogram profiles of hydrolyzed flavonoids of senescing leaves from WT, *tt6* and *dmr6* Arabidopsis mutant plants that corresponds to analyzed by LC-MS/MS showing the molecular ion of m/z = 287 in *dmr6* mutant plants analyzed by LC-MS/MS showing the molecular ion of m/z = 287 in *dmr6* mutant plants that corresponds to kaempferol. The peak at 7.35 min that corresponds to apigenin is also indicated. (C) UV and ion chromatogram of kaempferol standard. (D) Ion chromatogram profiles of hydrolyzed flavonoids of cauline leaves from WT, and *dmr6* Arabidopsis mutant plants LC-MS/MS showing the molecular ion of m/z = 137 that corresponds to salicylic acid (negative ion chromatogram). (E) Negative ion chromatogram of salicylic acid standard.

7.0

.0

5.5

7.5

Time [min]

Supplemental Fig. S9

В

*Zm*FNSI-1 complements susceptibility of Arabidopsis *dmr6-1* mutant plants towards *P. syringae* pv. *tomato* DC3000 (*Pst*). (A) Disease symptoms of WT plants, *dmr6-1* mutants and *dmr6-1* transformants expressing *Zm*FNSI-1, 0 and 3 days after *Pst* infection. Scale bar: 1 cm. (B) Leaf bacterial count at 0 and 3 days post infection (colony-forming units per mg of leaf tissue). A bacterial suspension with OD 0.05 was sprayed on the plants. Data show mean values \pm S.E.M of three biological repeats. Different letters over the bars indicate statically significant differences with P < 0.01 (ANOVA test).

Supplemental Table S1. Substrates tested in bioconversion assays in *E. coli* expressing *Zm*FNSI-1 and *At*DMR6 and *in vitro* assays with the recombinant proteins. Product formation is indicated for each compound tested.

Compound	Туре	Activity	Product formation
dihydroquercetin	dihydroflavonol	flavonol synthase	not detected
dihydrokaempferol	dihydroflavonol	flavonol synthase	not detected
leucocyanidin	leucoanthocyanidin	anthocyanidin	not detected
		synthase	
salicylic acid	phenolic acid	salicylic acid 3-	not detected
		hydroxylase	
naringenin	flavanone	flavanone 3-	not detected
		hydroxylase	
eriodictyol	flavanone	flavanone 3-	not detected
		hydroxylase	
naringenin	flavanone	flavone synthase	apigenin
eriodictyol	flavanone	flavone synthase	luteolin

Name	Sequence
ZmFNSI-F	5' CACCATGGCGGAGCACCTCCTG3'
ZmFNSI-R1	5' GGTTCTGAAGAGCTCGAGGCA3'
ZmFNSI-F-RT	5'AGGAGAAGGCCAAGCTCTACT3'
ZmFNSI-R-RT	5'CCCATGGTCTCCTTGAAATC3'
ZmFNSI-Ndel-F	5'ACAG <u>CATATG</u> GCGGAGCACCTCCTGTCGAC3'
ZmFNSI-BamH-R	5'TGTCA <u>GGATCCT</u> CAGGTTCTGAAGAGCTCG3'
AtDMR6-Ndel-F	5'ACAG <u>CATATG</u> GCGGCAAAGCTGATATCCACCGGT3'
AtDMR6-BamH-R	5'TGTCA <u>GGATCC</u> TTAGTTGTTTAGAAAATTCTCGAGGC3'
ZmFNS1-Kpn-prom-R2	5'CATA <u>GGTACC</u> GCCGCCGGCGCGTGCGTG3'
ZmFNS1-Notl-prom-F2	5'CACC <u>GCGGCCGC</u> GAGAGTTTGTGCTTGTCACTC3'
ZmActin1-F	5'CTTCGAATGCCCAGCAAT3'
ZmActin1-R	5'CGGAGAATAGCATGAGGAAG3'
AtCBP20-F	5'CCGGCCTATTCGTGTGGATTTTGA3'
AtCBP20-R	5'CATAATTCGTTGGCGCAGCTTGAG3'
AtUBQ10-F	5'AAGCAGCTTGAGGATGGAC3'
AtUBQ10-R	5'AGATAACAGGAACGGAAACATAGT3'
AtDMR6-F-RT	5'ATCTTTGGCCTTTGTGTTTG3'
AtDMR6-R-RT	5'CAAACACAAAGGCCAAAGAT3'

Supplemental Table S2. Primers used for cloning*, RT-qPCR and screening.

*The restriction enzyme recognition sequences are underlined in primer sequences