A Hybrid One-Way ANOVA Approach for Robust and Efficient Estimation of Differential Gene-Expressions with Multiple Patterns

Mohammad Manir Hossain Mollah^{1,*}, Rahman Jamal¹, Norfilza Mohd Mokhtar^{1,2} Roslan Harun¹, Md. Nurul Haque Mollah³

1 Institut Perubatan Molekul UKM (UMBI), University Kebangsaan Malaysia (UKM), Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras 56000 Kuala Lumpur, Malaysia

2 Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia

3 Laboratory of Bioinformatics, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh.

* E-mail: mhmollah06@yahoo.com

1. Hybridization of Robustness and Efficiency of Estimation in One-Way ANOVA Using the Minimum β -Divergence Method

Let x_{jk} be the kth observed random expression of a gene in the *j*th condition $(j = 1, 2, ..., m; k = 1, 2, ..., n_j)$, which follows the one-way ANOVA model as expressed below:

$$x_{jk} = \mu_j + \epsilon_{jk},\tag{1}$$

where μ_j is the mean of all expressions of a gene in the *j*th condition and ϵ_{jk} is the random error term that follows $N(0, \sigma_j^2)$. We wish to test the null hypothesis $(H_0) : \mu_1 = \mu_2 = \dots = \mu_m = \mu$ against the alternative hypothesis $(H_1) : H_0$ is not true, assuming that $\sigma_1^2 = \sigma_2^2 = \dots = \sigma_m^2 = \sigma^2$. Thus, the generalized likelihood-ratio test (LRT) criterion yields the following *F*-statistic to test H_0 against H_1 :

$$F = \frac{\sum_{j=1}^{m} n_j (\hat{\mu}_j - \hat{\mu})^2 / (m-1)}{\sum_{j=1}^{m} \sum_{k=1}^{n_j} (\boldsymbol{x}_{jk} - \hat{\mu}_j)^2 / (n-m)} \\ = \frac{\sum_{j=1}^{m} n_j (\hat{\mu}_j - \hat{\mu})^2 / (m-1)}{[n_1 \hat{\sigma}_1^2 + n_2 \hat{\sigma}_2^2 + \dots + n_m \hat{\sigma}_m^2] / (n-m)},$$
(2)

which follows the F-distribution with (m-1) and (n-m) degrees of freedom under H_0 [1], where $n = n_1 + n_2 +, ..., + n_m$ and

$$\hat{\mu}_j = \frac{1}{n_j} \sum_{k=1}^{n_j} x_{jk},$$
(3)

$$\hat{\sigma}_j^2 = \frac{1}{n_j} \sum_{k=1}^{n_j} (x_{jk} - \hat{\mu}_j)^2, \qquad (4)$$

$$\hat{\mu} = \frac{1}{n} \sum_{j=1}^{m} \sum_{k=1}^{n_j} x_{jk} = \sum_{j=1}^{m} n_j \hat{\mu}_j / n.$$
(5)

The critical region (CR) for testing H_0 against H_1 at the $(1-\alpha)100\%$ level of significance is defined by $Pr[F \ge F_0|H_0] = \alpha$, where $F_0 = F_\alpha(m-1, n-m)$ is the upper $100\alpha\%$ points of the *F*distribution with m-1 and n-m degrees of freedom. F_0 is also known as the cut-off point or critical value of the test. However, it is obvious that the maximum likelihood estimates (MLEs) $\hat{\theta}_j = (\hat{\mu}_j, \hat{\sigma}_j^2)$ of $\theta_j = (\mu_j, \sigma_j^2)$ for j = 1, 2, ..., m in the above equations 3 and 5 are highly sensitive to outliers. Therefore, the identification of DE genes using classical ANOVA may produce misleading results because gene expression data are often contains outliers. Thus, in this paper, we consider the minimum β -divergence method [2, 3] to improve the robustness and efficiency of estimation in one-way ANOVA. The minimum β -divergence estimators $\hat{\theta}_{j,\beta} = (\hat{\mu}_{j,\beta}, \hat{\sigma}_{j,\beta}^2)$ of the parameters $\theta_j = (\mu_j, \sigma_i^2)$ are computed iteratively as follows:

$$\mu_{j,t+1} = \frac{\sum_{k=1}^{n_j} \phi_\beta(x_{jk} | \boldsymbol{\theta}_{j,t}) x_{jk}}{\sum_{k=1}^{n_j} \phi_\beta(x_{jk} | \boldsymbol{\theta}_{j,t})}$$
(6)

and

$$\sigma_{j,t+1}^2 = \frac{\sum_{k=1}^{n_j} \phi_\beta(x_{jk} | \boldsymbol{\theta}_{j,t}) (x_{jk} - \mu_{j,t})^2}{(\beta + 1)^{-1} \sum_{k=1}^{n_j} \phi_\beta(x_{jk} | \boldsymbol{\theta}_{j,t})},\tag{7}$$

where

$$W_{\beta}(x_{jk}|\boldsymbol{\theta}_j) = \exp\{-\frac{\beta}{2\sigma_j^2}(x_{jk}-\mu_j)^2\},\tag{8}$$

which we call the β -weight function [2, 3]. The notation $\boldsymbol{\theta}_{t+1}$ represents the update to $\boldsymbol{\theta}_t$ in the (t+1)th iteration. The robustness of these estimators is discussed in the context of influence functions in [2], and their consistency is discussed in [3]. The minimum β -divergence estimators $\hat{\boldsymbol{\theta}}_{j,\beta} = (\hat{\mu}_{j,\beta}, \hat{\sigma}_{j,\beta}^2)$ of the parameters $\boldsymbol{\theta}_j = (\mu_j, \sigma_j^2)$ can tolerate up to 50% outlying expressions/observations in the dataset if appropriate initial values are chosen for $\boldsymbol{\theta}_j$ in equations 6 and 8). To obtain these appropriate initial values, we define a dataset $\mathcal{D}_j^0 \subset \mathcal{D}_j = \{x_{jk}; k = 1, 2, ..., n_j\}$ as follows:

$$\mathscr{D}_{j}^{0} = \{ x_{jk} \in \mathscr{D}_{j}; \ |x_{jk} - x_{j}^{0}| < x_{j}^{1}, k = 1, 2, ..., n_{j} \},$$

$$(9)$$

where x_j^0 and x_j^1 are the medians of X_j and $|X_j - x_j^0|$, respectively. Then, the appropriate initial value for $\theta_j = (\mu_j, \sigma_j^2)$ is computed using the classical estimators (equations 3 and 4) based on the sub-dataset \mathscr{D}_j^0 . For $\beta=0$, the minimum β -divergence estimators $\hat{\theta}_{j,\beta}$ (equations 6 and 7) reduce to the non-iterative MLEs $\hat{\theta}_j$ (equations 3 and 4).

It is well known that MLE is more efficient than any robust estimator in the absence of outliers. Therefore, in this paper, an attempt is made to develop a hybrid approach in which the classical estimators $\hat{\theta}_j$ (equations 3 and 4) are used in the absence of outliers and the minimum β -divergence estimators $\hat{\theta}_{j,\beta}$ (equations 6 and 7) are used in the presence of outliers for the estimation of θ_j in one-way ANOVA. The minimum β -divergence method offers two approaches to unifying robustness and efficiency of estimation in ANOVA. One method is to select the tuning parameter β via cross-validation (CV), as discussed in detail in a previous publication [2]. In the absence of outliers, the CV method produces $\beta=0$ for the minimum β -divergence estimators and is thus equivalent to the classical estimators, as discussed above. In the presence of outliers, it produces $\beta > 0$ for the minimum β -divergence estimators. To develop the alternative approach, we consider the β -weight function (equation 8) with $\beta = 0.2$ for outlier detection. This weight function assigns smaller weights (≥ 0) to outlier observations and larger weights (≤ 1) for no outlying observations. A gene expression x_{jk} is defined based on the β -weight function as follows, depending on whether it is contain outlier or not:

$$W_{\beta}(x_{jk}|\widehat{\boldsymbol{\theta}}_{j,\beta}) = \begin{cases} >\delta_j, \text{ if } x_{jk} \text{ is not outlying} \\ \leq \delta_j, \text{ if } x_{jk} \text{ is outlying,} \end{cases}$$
(10)

where the threshold value δ_j is the quantile value of $W_{\beta}(x_{jk}|\hat{\theta}_{j,\beta})$ with probability

$$Pr\{W_{\beta}(x_{jk}|\widehat{\boldsymbol{\theta}}_{j,\beta}) \le \delta_j\} \le p = 10^{-5}.$$
(11)

Here, the derivation of the distributional form of $W_{\beta}(x_{jk}|\hat{\theta}_{j,\beta})$ is not a tractable problem. However, if we assume that $\hat{\theta}_{j,\beta} = \theta_j$ (good fit), then we can consider the distribution

$$W_{\beta}(x_{jk}|\widehat{\boldsymbol{\theta}}_{j,\beta}) \rightsquigarrow \frac{2}{\beta \times \delta_j} f_{\chi^2_{(1)}}(-\frac{2}{\beta}\log\delta_j), \tag{12}$$

where $\chi^2_{(1)}$ denotes the chi-square variable with 1 degree of freedom, which assumes values of $-\frac{2}{\beta}\log \delta_j$, where $0 < \delta_j \leq 1$. We can also simulate the distribution of $W_{\beta}(y_j|\hat{\theta}_{j,\beta})$ to obtain the threshold value δ_j , where the values of the y_j s are simulated based on the normal distribution with mean $\hat{\mu}_{j,\beta}$ and variance $\hat{\sigma}^2_{j,\beta}$. Thus, we can unify the minimum β -divergence estimator with MLE for θ_j in the *j*th condition as follows:

$$\widehat{\boldsymbol{\theta}}_{j,\beta} = \begin{cases} \widehat{\boldsymbol{\theta}}_{j,\beta}, \text{ if } \sum_{k=1}^{n_j} I_{[W_{\beta}(x_{jk}|\widehat{\boldsymbol{\theta}}_{j,\beta}) > \delta_j]} < n_j, \\ \\ \widehat{\boldsymbol{\theta}}_j, \text{ if } \sum_{k=1}^{n_j} I_{[W_{\beta}(x_{jk}|\widehat{\boldsymbol{\theta}}_{j,\beta}) > \delta_j]} = n_j. \end{cases}$$

Then, the modified F-statistic, denoted by F_{β} , is given by

$$F_{\beta} = \frac{\sum_{j=1}^{k} n_j (\hat{\mu}_{j,\beta} - \hat{\mu}_{\beta})^2 / (k-1)}{[n_1 \hat{\sigma}_{1,\beta}^2 + n_2 \hat{\sigma}_{2,\beta}^2 + \dots + n_m \hat{\sigma}_{m,\beta}^2] / (n-m)}.$$
(13)

To test the null hypothesis (H_0) against the alternative hypothesis (H_1) from the robustness perspective, we can compute *p*-values under the assumption that F_β approximately follows the *F*distribution. Note that this modified F-statistic (F_β) reduces to the classical F-statistic (equation 2) for $\beta = 0$. However, we can also compute permutation-based *p*-values to test whether H_0 is true or false. To compute permutation-based *p*-values, we first compute the value of F_β as defined by equation 13 based on the given dataset. Then, we permute the values of the given dataset of all conditions *N* times, and each time, we compute F_β . Finally, we compute the *p*-values for testing H_0 against H_1 using the following formula:

$$p\text{-value} = \sum_{k=1}^{N} I_{[\hat{F}_{\beta}(k) \le \hat{F}_{\beta}]} / N, \qquad (14)$$

where \hat{F}_{β} denotes the estimate of F_{β} obtained for the given dataset and $\hat{F}_{\beta}(k)$ denotes the estimate of F_{β} obtained for the kth permutation of the values of the response variable in the dataset. Note that for $\beta=0$, F_{β} reduces to the classical F-statistic.

2. Supplementary Results for simulated and Real Gene-Expressions Datasets

Performance investigation for the proposed method against other eight several methods based on simulated gene-expression profiles under m=2 conditions in **subsection 2.1**. Supplementary results of the proposed method for the real gene expression colon cancer dataset is given in the following **subsection 2.2**. Discussions about these supplementary results are given in the main text.

2.1. Performance evaluation based on simulated gene expression profiles with m=2 conditions for both small- and large-sample cases

Table A: Performance evaluation based on simulated gene expression profiles with m=2 conditions for the small-sample case $(n_1 = n_2 = 4)$

Results for the small-sample case $(n_1 = n_2 = 4)$																
Methods	TPR	FPR	TNR	FNR	FDR	MER	AUC	pAUC	TPR	FPR	TNR	FNR	FDR	MER	AUC	pAUC
Without outlying expressions								For 1 outlier with each of 5% genes								
ANOVA	0.928	0.001	0.999	0.072	0.072	0.003	0.916	0.183	0.472	0.011	0.989	0.527	0.527	0.021	0.473	0.094
SAM	0.940	0.001	0.999	0.060	0.060	0.002	0.939	0.188	0.477	0.011	0.989	0.522	0.522	0.021	0.476	0.095
LIMMA	0.945	0.001	0.999	0.055	0.055	0.002	0.944	0.189	0.475	0.011	0.989	0.525	0.525	0.021	0.477	0.095
eLNN	0.927	0.001	0.999	0.072	0.072	0.003	0.926	0.185	0.425	0.012	0.988	0.575	0.575	0.023	0.424	0.085
EBarrays	0.932	0.001	0.999	0.068	0.068	0.003	0.933	0.186	0.398	0.012	0.988	0.603	0.603	0.024	0.399	0.080
BetaEB	0.932	0.001	0.999	0.068	0.068	0.003	0.931	0.186	0.930	0.001	0.999	0.070	0.070	0.003	0.931	0.186
KW	0.948	0.001	0.999	0.052	0.052	0.002	0.949	0.190	0.477	0.011	0.989	0.522	0.522	0.021	0.476	0.096
Proposed	0.928	0.001	0.999	0.072	0.072	0.003	0.918	0.183	0.925	0.002	0.998	0.075	0.075	0.003	0.917	0.183
	F	`or 1 o	outlier	with	each	of 10	$\%~{ m gen}$	es	For 1 outlier with each of 75% genes							
ANOVA	0.320	0.014	0.986	0.680	0.680	0.027	0.321	0.064	0.087	0.019	0.981	0.912	0.912	0.036	0.087	0.018
SAM	0.325	0.014	0.986	0.675	0.675	0.027	0.324	0.065	0.087	0.019	0.981	0.912	0.912	0.036	0.086	0.018
LIMMA	0.323	0.014	0.986	0.677	0.677	0.027	0.323	0.064	0.092	0.019	0.981	0.907	0.907	0.036	0.091	0.018
eLNN	0.258	0.015	0.985	0.743	0.743	0.030	0.256	0.051	0.040	0.020	0.980	0.960	0.960	0.038	0.041	0.008
EBarrays	0.230	0.016	0.984	0.770	0.770	0.031	0.231	0.046	0.032	0.020	0.980	0.968	0.968	0.039	0.033	0.006
BetaEB	0.930	0.001	0.999	0.070	0.070	0.003	0.931	0.186	0.032	0.020	0.980	0.968	0.968	0.039	0.031	0.006
KW	0.323	0.014	0.986	0.677	0.677	0.027	0.324	0.064	0.087	0.019	0.981	0.912	0.912	0.036	0.086	0.018
Proposed	0.924	0.002	0.998	0.076	0.076	0.003	0.916	0.183	0.907	0.002	0.998	0.092	0.092	0.004	0.908	0.181

Average performance results of eight methods (ANOVA, SAM, LIMMA, eLNN, EBarrays, BetaEB, KW and Proposed) based on 100 datasets generated using a one-way ANOVA model with m=2 groups/conditions and $\sigma^2 = 0.05$ for sample size n1=n2=4. Each dataset for each case contained 300 true DE genes, and the remainder were 19700 true EE genes. The performance indices/measures TPR, FPR, TNR, FNR, FDR, MER and AUC were calculated for each method based on the top 300 estimated DE genes, under the assumption that the other estimated genes in each dataset for each case were EE genes for each method. The performance measure pAUC was calculated at FPR=0.2 for each method and for each dataset.

Table B: Performance evaluation based on simulated gene expression profiles using a Bayesisn model (EBarrays LNN-model) with m=2 conditions

Results for the small-sample case $(n_1 = n_2 = 3)$																
Methods	TPR	FPR	TNR	FNR	FDR	MER	AUC	pAUC	TPR	FPR	TNR	FNR	FDR	MER	AUC	pAUC
	Without outlying expressions							For 1 outlier with each of 5% genes								
ANOVA	0.818	0.005	0.995	0.182	0.182	0.010	0.803	0.159	0.420	0.012	0.988	0.580	0.580	0.023	0.419	0.084
SAM	0.760	0.005	0.995	0.240	0.240	0.010	0.761	0.152	0.420	0.012	0.988	0.580	0.580	0.023	0.422	0.084
LIMMA	0.797	0.004	0.996	0.203	0.203	0.008	0.796	0.159	0.425	0.012	0.988	0.575	0.575	0.023	0.424	0.085
eLNN	0.820	0.004	0.996	0.180	0.180	0.007	0.822	0.164	0.453	0.011	0.989	0.547	0.547	0.022	0.453	0.089
EBarrays	0.823	0.004	0.996	0.177	0.177	0.007	0.824	0.164	0.388	0.012	0.988	0.613	0.613	0.024	0.386	0.077
BetaEB	0.823	0.004	0.996	0.177	0.177	0.007	0.822	0.164	0.823	0.004	0.996	0.177	0.177	0.007	0.823	0.164
KW	0.850	0.003	0.997	0.150	0.150	0.004	0.795	0.181	0.460	0.011	0.989	0.540	0.540	0.022	0.461	0.092
Proposed	0.818	0.005	0.995	0.182	0.182	0.010	0.803	0.159	0.815	0.009	0.991	0.185	0.185	0.009	0.802	0.158
	For 1 outlier with each of 10% genes						For 1 outlier with each of 75% genes									
ANOVA	0.282	0.015	0.985	0.718	0.715	0.029	0.283	0.056	0.077	0.019	0.981	0.922	0.922	0.037	0.078	0.015
SAM	0.282	0.015	0.985	0.718	0.718	0.029	0.284	0.056	0.082	0.019	0.981	0.917	0.917	0.037	0.083	0.016
LIMMA	0.285	0.015	0.985	0.715	0.715	0.029	0.283	0.057	0.082	0.019	0.981	0.917	0.917	0.037	0.081	0.016
eLNN	0.338	0.014	0.986	0.662	0.662	0.026	0.337	0.066	0.075	0.019	0.981	0.925	0.925	0.037	0.076	0.015
EBarrays	0.235	0.016	0.984	0.765	0.765	0.031	0.238	0.047	0.035	0.020	0.980	0.965	0.965	0.039	0.036	0.007
BetaEB	0.818	0.004	0.996	0.182	0.182	0.007	0.818	0.163	0.035	0.020	0.980	0.965	0.965	0.039	0.033	0.007
KW	0.305	0.014	0.986	0.695	0.695	0.028	0.305	0.062	0.077	0.019	0.981	0.922	0.922	0.037	0.077	0.015
Proposed	0.816	0.010	0.990	0.184	0.184	0.009	0.805	0.158	0.813	0.10	0.990	0.187	0.187	0.011	0.727	0.154
Becults for the large sample case $(n_1 - n_2 - 15)$																
					Resu	ılts fo	r the	large-s	ample	case	$(n_1 =$	$n_2 =$	15)			
Methods	TPR	FPR	TNR	FNR	Rest FDR	ilts fo MER	r the AUC	large-s	ample TPR	case FPR	$\frac{(n_1 = TNR)}{TNR}$	$n_2 =$ FNR	15) FDR	MER	AUC	pAUC
Methods	TPR	FPR Wi	TNR thout	FNR outly	Rest FDR	ults fo MER xpress	r the AUC ions	large-s pAUC	ample TPR For	FPR	$(n_1 = TNR)$	n ₂ = FNR liers v	15) FDR vith ea	MER ach of	AUC 5% g	pAUC
Methods	TPR 0.941	FPR Wi 0.001	TNR thout 0.999	FNR outly 0.059	Resu FDR ring ex 0.059	ults fo MER xpress 0.002	r the AUC ions 0.942	large-s pAUC 0.187	ample TPR For 0.537	case FPR 1 or 0.009	$\frac{\mathbf{(n_1 = TNR)}}{\mathbf{2 out}}$	n ₂ = FNR liers v 0.463	15) FDR vith ea 0.463	MER ach of 0.018	AUC 5% g 0.536	pAUC enes 0.107
Methods ANOVA SAM	TPR 0.941 0.942	FPR Wi 0.001 0.001	TNR thout 0.999 0.999	FNR outly 0.059 0.058	Rest FDR ring ex 0.059 0.058	Its fo MER xpress 0.002 0.002	r the AUC ions 0.942 0.941	large-s pAUC 0.187 0.188	ample TPR For 0.537 0.537	e case FPR 1 or 0.009 0.009	$(n_1 = TNR)$ 2 out 0.991 0.991	n₂ = FNR liers v 0.463 0.463	15) FDR vith ea 0.463 0.463	MER ach of 0.018 0.018	AUC 5% g 0.536 0.535	pAUC enes 0.107 0.107
Methods ANOVA SAM LIMMA	TPR 0.941 0.942 0.942	FPR Wi 0.001 0.001 0.001	TNR thout 0.999 0.999 0.999	FNR outly 0.059 0.058 0.058	Resu FDR ing ex 0.059 0.058 0.058	alts fo MER xpress 0.002 0.002 0.002	r the AUC ions 0.942 0.941 0.944	large-s pAUC 0.187 0.188 0.188	ample TPR For 0.537 0.537 0.540	e case FPR 1 or 0.009 0.009 0.009	$(n_1 = TNR)$ 2 out 0.991 0.991 0.991	n₂ = FNR liers v 0.463 0.463 0.460	15) FDR vith ea 0.463 0.463 0.460	MER ach of 0.018 0.018 0.018	AUC 5% g 0.536 0.535 0.541	pAUC enes 0.107 0.107 0.108
Methods ANOVA SAM LIMMA eLNN	TPR 0.941 0.942 0.942 0.938	FPR Wi 0.001 0.001 0.001 0.001	TNR thout 0.999 0.999 0.999 0.999	FNR outly 0.059 0.058 0.058 0.062	Resu FDR 0.059 0.058 0.058 0.058 0.062	alts fo MER xpress 0.002 0.002 0.002 0.002 0.002	r the AUC ions 0.942 0.941 0.944 0.939	0.187 0.188 0.188 0.188 0.185	ample TPR For 0.537 0.537 0.540 0.463	e case FPR 0.009 0.009 0.009 0.009	$(n_1 = TNR)$ 2 out 0.991 0.991 0.991 0.991 0.989	$n_2 = FNR$ liers v 0.463 0.463 0.460 0.537	15) FDR vith ea 0.463 0.463 0.460 0.537	MER ach of 0.018 0.018 0.018 0.021	AUC 5% g 0.536 0.535 0.541 0.463	pAUC enes 0.107 0.107 0.108 0.092
Methods ANOVA SAM LIMMA eLNN EBarrays	TPR 0.941 0.942 0.942 0.938 0.942	FPR Wi 0.001 0.001 0.001 0.001 0.001	TNR thout 0.999 0.999 0.999 0.999 0.999	FNR outly 0.059 0.058 0.058 0.062 0.058	Resu FDR 0.059 0.058 0.058 0.062 0.058	Its fo MER xpress 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	r the AUC ions 0.942 0.941 0.944 0.939 0.943	large-s pAUC 0.187 0.188 0.188 0.185 0.188	ample TPR For 0.537 0.537 0.540 0.463 0.590	e case FPR 1 or 0.009 0.009 0.009 0.011 0.008	$(n_1 = TNR) = 0.991 = 0.991 = 0.991 = 0.989 = 0.992$	$\begin{array}{r} \mathbf{n_2} = \\ \hline FNR \\ \hline \mathbf{liers } \mathbf{v} \\ \hline 0.463 \\ 0.463 \\ 0.460 \\ 0.537 \\ 0.410 \end{array}$	15) FDR vith ea 0.463 0.463 0.460 0.537 0.410	MER ach of 0.018 0.018 0.018 0.021 0.021	AUC 5% g 0.536 0.535 0.541 0.463 0.591	pAUC enes 0.107 0.107 0.108 0.092 0.118
Methods ANOVA SAM LIMMA eLNN EBarrays BetaEB	TPR 0.941 0.942 0.942 0.938 0.942 0.942	FPR Wi 0.001 0.001 0.001 0.001 0.001 0.001	TNR thout 0.999 0.999 0.999 0.999 0.999 0.999 0.999	FNR 0.059 0.058 0.058 0.062 0.058 0.058 0.058	Rest FDR 0.059 0.058 0.058 0.062 0.058 0.058 0.058	Its fo MER xpress 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	r the AUC ions 0.942 0.941 0.944 0.939 0.943 0.944	large-s pAUC 0.187 0.188 0.188 0.185 0.188 0.188 0.188	ample TPR For 0.537 0.537 0.540 0.463 0.590 0.942	e case FPR 1 or 0.009 0.009 0.009 0.009 0.011 0.008 0.001	$(n_1 = TNR) = 0.991 = 0.991 = 0.991 = 0.991 = 0.989 = 0.992 = 0.999 $	n₂ = FNR liers v 0.463 0.463 0.460 0.537 0.410 0.058	15) FDR vith ea 0.463 0.463 0.460 0.537 0.410 0.058	MER ach of 0.018 0.018 0.018 0.021 0.016 0.002	AUC 5% g 0.536 0.535 0.541 0.463 0.591 0.942	pAUC enes 0.107 0.107 0.108 0.092 0.118 0.188
Methods ANOVA SAM LIMMA eLNN EBarrays BetaEB KW	TPR 0.941 0.942 0.942 0.942 0.942 0.942 0.942 0.942	FPR 0.001 0.001 0.001 0.001 0.001 0.001 0.001	TNR thout 0.999 0.999 0.999 0.999 0.999 0.999 0.999	FNR outly 0.059 0.058 0.058 0.062 0.058 0.058 0.058	Resu FDR 0.059 0.058 0.058 0.062 0.058 0.058 0.058 0.060	alts fo MER xpress 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	r the AUC ions 0.942 0.941 0.944 0.939 0.943 0.944 0.941	large-s pAUC 0.187 0.188 0.188 0.185 0.188 0.188 0.188 0.188	ample TPR 0.537 0.537 0.540 0.463 0.590 0.942 0.820	case FPR 1 or 0.009 0.009 0.009 0.009 0.011 0.008 0.001 0.004	$\begin{array}{l} (\mathbf{n_1} = \\ \hline \mathbf{TNR} \\ \hline \mathbf{2 \ out} \\ \hline 0.991 \\ 0.991 \\ 0.991 \\ 0.989 \\ 0.992 \\ 0.999 \\ 0.996 \end{array}$	$\begin{array}{l} \mathbf{n_2} = \\ \overline{\mathrm{FNR}} \\ \overline{\mathbf{liers} \ \mathbf{v}} \\ 0.463 \\ 0.460 \\ 0.537 \\ 0.410 \\ 0.058 \\ 0.180 \end{array}$	15) FDR vith e 0.463 0.463 0.460 0.537 0.410 0.058 0.180	MER ach of 0.018 0.018 0.018 0.021 0.016 0.002 0.007	AUC 5% g 0.536 0.535 0.541 0.463 0.591 0.942 0.821	pAUC enes 0.107 0.107 0.108 0.092 0.118 0.188 0.164
Methods ANOVA SAM LIMMA eLNN EBarrays BetaEB KW Proposed	TPR 0.941 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942	FPR 0.001 0.001 0.001 0.001 0.001 0.001 0.001	TNR 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999	FNR outly 0.059 0.058 0.058 0.058 0.058 0.058 0.060 0.059	Resu FDR 0.059 0.058 0.058 0.058 0.058 0.058 0.058 0.060 0.059	Its fo MER xpress 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	r the AUC ions 0.942 0.941 0.944 0.939 0.943 0.944 0.941 0.942	large-s pAUC 0.187 0.188 0.188 0.185 0.188 0.188 0.188 0.188 0.188 0.188 0.188 0.188 0.188 0.188	ample TPR For 0.537 0.540 0.463 0.590 0.942 0.820 0.935	case FPR 1 or 0.009 0.009 0.009 0.011 0.008 0.001 0.004 0.001	$\begin{array}{l} (\mathbf{n_1} = \\ \hline \text{TNR} \\ \hline 2 \text{ out} \\ \hline 0.991 \\ 0.991 \\ 0.992 \\ 0.992 \\ 0.999 \\ 0.996 \\ 0.999 \end{array}$	$\begin{array}{l} \mathbf{n_2} = \\ \overline{\mathrm{FNR}} \\ \overline{\mathrm{liers}} \ \mathbf{v} \\ 0.463 \\ 0.463 \\ 0.463 \\ 0.460 \\ 0.537 \\ 0.410 \\ 0.058 \\ 0.180 \\ 0.065 \end{array}$	15) FDR vith ea 0.463 0.463 0.460 0.537 0.410 0.058 0.180 0.065	MER ach of 0.018 0.018 0.018 0.021 0.016 0.002 0.007 0.003	AUC 5% g 0.536 0.535 0.541 0.463 0.591 0.942 0.821 0.936	pAUC enes 0.107 0.107 0.108 0.092 0.118 0.188 0.164 0.187
Methods ANOVA SAM LIMMA eLNN EBarrays BetaEB KW Proposed	TPR 0.941 0.942 0.938 0.942 0.938 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.940 0.941 For	FPR Wi 0.001 0.001 0.001 0.001 0.001 0.001 1 or	TNR thout 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 2 outl	FNR outly 0.059 0.058 0.058 0.062 0.058 0.058 0.060 0.059 iers w	Resu FDR ing e2 0.059 0.058 0.058 0.058 0.058 0.058 0.058 0.060 0.059 ith ea	Its fo MER xpress 0.002	r the AUC ions 0.942 0.941 0.944 0.943 0.943 0.944 0.941 0.942 10% §	large-s pAUC 0.187 0.188 0.188 0.185 0.188 0.188 0.188 0.186 0.187 genes	ample TPR For 0.537 0.540 0.463 0.590 0.942 0.820 0.935 For	case FPR 1 or 0.009 0.009 0.009 0.011 0.004 0.001 1 or	$\begin{array}{l} (\mathbf{n_1} = \\ \hline \text{TNR} \\ \hline 2 \text{ out} \\ \hline 0.991 \\ 0.991 \\ 0.992 \\ 0.999 \\ 0.996 \\ 0.999 \\ 0.999 \\ \hline 2 \text{ out} \\ \hline \end{array}$	$\begin{array}{c} \mathbf{n_2} = \\ \overline{\mathrm{FNR}} \\ \overline{\mathrm{liers}} \ \mathbf{v} \\ 0.463 \\ 0.463 \\ 0.460 \\ 0.537 \\ 0.410 \\ 0.058 \\ 0.180 \\ 0.065 \\ \overline{\mathrm{iers}} \ \mathbf{w} \end{array}$	15) FDR vith ea 0.463 0.463 0.460 0.537 0.410 0.058 0.180 0.065 ith ea	MER ach of 0.018 0.018 0.021 0.016 0.002 0.007 0.003 ch of	AUC 5% g 0.536 0.535 0.541 0.463 0.591 0.942 0.821 0.936 75% g	pAUC enes 0.107 0.107 0.108 0.092 0.118 0.188 0.164 0.187 genes
Methods ANOVA SAM LIMMA eLNN EBarrays BetaEB KW Proposed ANOVA	TPR 0.941 0.942 0.938 0.942 0.943	FPR Wi 0.001 0.001 0.001 0.001 0.001 0.001 1 or 0.012	TNR thout 0.999 0.999 0.999 0.999 0.999 0.999 0.999 2 outl 0.988	FNR outly 0.059 0.058 0.058 0.062 0.058 0.058 0.060 0.059 iers w 0.603	Resu FDR 0.059 0.058 0.058 0.062 0.058 0.058 0.058 0.058 0.060 0.059 ith ea 0.603	Its fo MER xpress 0.002	r the AUC ions 0.942 0.941 0.944 0.943 0.943 0.944 0.941 0.942 10% g 0.397	large-s pAUC 0.187 0.188 0.188 0.188 0.188 0.188 0.188 0.186 0.187 genes 0.079	ample TPR For 0.537 0.540 0.463 0.590 0.942 0.820 0.935 For 0.285	case FPR 1 or 0.009 0.009 0.009 0.011 0.008 0.001 0.004 0.001 1 or 0.015	$\begin{array}{l} (\mathbf{n_1} = \\ TNR \\ \hline 2 \text{ out} \\ \hline 0.991 \\ 0.991 \\ 0.999 \\ 0.999 \\ 0.999 \\ 0.996 \\ 0.999 \\ \hline 0.999 \\ 2 \text{ out} \\ \hline \\ 0.985 \end{array}$	$\begin{array}{r} \mathbf{n_2} = \\ \overline{\mathrm{FNR}} \\ \overline{\mathrm{liers}} \ \mathbf{v} \\ 0.463 \\ 0.463 \\ 0.460 \\ 0.537 \\ 0.410 \\ 0.058 \\ 0.180 \\ 0.065 \\ \overline{\mathrm{old}} \\ \mathbf{v} \\ \mathbf$	15) FDR vith ear 0.463 0.463 0.460 0.537 0.410 0.058 0.180 0.065 ith ear 0.715	MER ach of 0.018 0.018 0.021 0.016 0.002 0.007 0.003 ach of 0.029	AUC 5% g 0.536 0.535 0.541 0.463 0.591 0.942 0.821 0.936 75% g 0.284	pAUC enes 0.107 0.107 0.108 0.092 0.118 0.188 0.164 0.187 genes 0.056
Methods ANOVA SAM LIMMA eLNN EBarrays BetaEB KW Proposed ANOVA SAM	TPR 0.941 0.942 0.938 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.940 0.941 For 0.398 0.400	FPR 0.001 0.001 0.001 0.001 0.001 0.001 1 or 2 0.012 0.012	TNR thout 0.999 0.999 0.999 0.999 0.999 0.999 0.999 2 outl 0.988 0.988	FNR outly 0.059 0.058 0.062 0.058 0.058 0.058 0.060 0.059 iers w 0.603 0.600	Rest FDR ing ez 0.059 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.059 ith ea 0.603 0.600	Its fo MER xpress 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.024	r the AUC ions 0.942 0.941 0.944 0.939 0.943 0.944 0.944 0.941 0.942 10% g 0.397 0.400	large-s pAUC 0.187 0.188 0.188 0.188 0.188 0.188 0.188 0.186 0.187 genes 0.079 0.080	ample TPR For 0.537 0.540 0.463 0.590 0.942 0.820 0.935 For 0.285 0.285	case FPR 1 or 0.009 0.009 0.011 0.008 0.001 0.004 0.001 1 or 0.015	$\begin{array}{l} (\mathbf{n_1} = \\ TNR \\ \hline 2 \text{ out} \\ \hline 0.991 \\ 0.991 \\ 0.992 \\ 0.992 \\ 0.999 \\ 0.996 \\ 0.999 \\ \hline 0.996 \\ 0.999 \\ \hline 2 \text{ out} \\ \hline 0.985 \\ 0.985 \end{array}$	$\begin{array}{l} \mathbf{n_2} = \\ \overline{\mathrm{FNR}} \\ \overline{\mathrm{liers}} \ \mathbf{v} \\ 0.463 \\ 0.463 \\ 0.460 \\ 0.537 \\ 0.410 \\ 0.058 \\ 0.180 \\ 0.065 \\ \overline{\mathrm{otrs}} \ \mathbf{w} \\ 0.715 \\ 0.715 \end{array}$	15) FDR vith e: 0.463 0.463 0.460 0.537 0.410 0.058 0.180 0.065 ith ea 0.715 0.715	MER ach of 0.018 0.018 0.021 0.016 0.002 0.007 0.003 ach of 0.029 0.029	AUC 5% g 0.536 0.535 0.541 0.463 0.591 0.942 0.821 0.936 75% g 0.284 0.284	pAUC enes 0.107 0.107 0.108 0.092 0.118 0.188 0.164 0.187 genes 0.056 0.056
Methods ANOVA SAM LIMMA eLNN EBarrays BetaEB KW Proposed ANOVA SAM LIMMA	TPR 0.941 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.940 0.940 0.400	FPR 0.001 0.001 0.001 0.001 0.001 0.001 1 or 2 0.012 0.012 0.012	TNR thout 0.999 0.999 0.999 0.999 0.999 0.999 0.999 2 outl 0.988 0.988 0.988	FNR outly 0.059 0.058 0.062 0.058 0.060 0.058 0.060 0.059 iers w 0.603 0.600 0.600	Rest FDR ing ez 0.059 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.059 ith ea 0.600 0.600	Its fo MER xpress 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.024 0.024	r the AUC ions 0.942 0.941 0.944 0.939 0.943 0.944 0.944 0.941 0.942 10% g 0.397 0.400 0.400	large-s pAUC 0.187 0.188 0.188 0.188 0.188 0.188 0.188 0.186 0.187 genes 0.079 0.080 0.080	ample TPR For 0.537 0.540 0.463 0.590 0.942 0.820 0.935 For 0.285 0.285 0.310	case FPR 1 or 0.009 0.009 0.011 0.008 0.001 0.004 0.001 1 or 0.015 0.014	$\begin{array}{l} (\mathbf{n_1} = \\ TNR \\ \hline 2 \text{ out} \\ \hline 0.991 \\ 0.991 \\ 0.992 \\ 0.992 \\ 0.999 \\ 0.996 \\ 0.999 \\ \hline 0.996 \\ 0.999 \\ \hline 2 \text{ out} \\ \hline 0.985 \\ 0.985 \\ 0.986 \end{array}$	$\begin{array}{l} \mathbf{n_2} = \\ \overline{\mathrm{FNR}} \\ \overline{\mathrm{liers}} \ \mathbf{v} \\ 0.463 \\ 0.463 \\ 0.460 \\ 0.537 \\ 0.410 \\ 0.058 \\ 0.180 \\ 0.065 \\ \overline{\mathrm{0.180}} \\ 0.065 \\ \overline{\mathrm{0.715}} \\ 0.715 \\ 0.690 \end{array}$	15) FDR vith e 0.463 0.463 0.463 0.460 0.537 0.410 0.058 0.180 0.065 ith ea 0.715 0.715 0.715	MER ach of 0.018 0.018 0.021 0.016 0.002 0.007 0.003 ach of 0.029 0.029 0.028	AUC 5% g 0.536 0.535 0.541 0.463 0.591 0.942 0.942 0.936 75% g 0.284 0.284 0.284	pAUC enes 0.107 0.107 0.108 0.092 0.118 0.188 0.164 0.187 genes 0.056 0.056 0.061
Methods ANOVA SAM LIMMA eLNN EBarrays BetaEB KW Proposed ANOVA SAM LIMMA eLNN	TPR 0.941 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.940 0.400 0.400 0.412	FPR 0.001 0.001 0.001 0.001 0.001 0.001 0.001 1 or 2 0.012 0.012 0.012 0.012	TNR thout 0.999 0.999 0.999 0.999 0.999 0.999 0.999 2 outl 0.988 0.988 0.988 0.988	FNR outly 0.059 0.058 0.062 0.058 0.060 0.059 iers w 0.603 0.600 0.600 0.588	Rest FDR ing ez 0.059 0.058 0.058 0.058 0.058 0.058 0.059 ith ea 0.600 0.600 0.588	Its fo MER xpress 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.024 0.024 0.024	r the AUC ions 0.942 0.941 0.944 0.939 0.944 0.944 0.941 0.942 10% g 0.397 0.400 0.400 0.412	large-s pAUC 0.187 0.188 0.188 0.188 0.188 0.188 0.188 0.186 0.187 genes 0.079 0.080 0.080 0.082	ample TPR For 0.537 0.537 0.537 0.540 0.463 0.590 0.942 0.820 0.935 For 0.285 0.310 0.407	case FPR 1 or 0.009 0.009 0.001 0.001 0.004 0.0015 0.015 0.014 0.012	$\begin{array}{l} (\mathbf{n_1} = \\ \hline \mathbf{TNR} \\ \mathbf{2 out} \\ 0.991 \\ 0.991 \\ 0.992 \\ 0.992 \\ 0.996 \\ 0.999 \\ \mathbf{2 out} \\ 0.985 \\ 0.985 \\ 0.986 \\ 0.988 \end{array}$	$\begin{array}{l} \mathbf{n_2} = \\ \overline{\mathrm{FNR}} \\ \overline{\mathrm{liers}} & \mathbf{v} \\ 0.463 \\ 0.463 \\ 0.460 \\ 0.537 \\ 0.410 \\ 0.058 \\ 0.180 \\ 0.065 \\ \overline{\mathrm{iers}} & \mathbf{w} \\ 0.715 \\ 0.715 \\ 0.690 \\ 0.593 \end{array}$	15) FDR vith e 0.463 0.463 0.460 0.537 0.410 0.058 0.180 0.065 ith ea 0.715 0.715 0.690 0.593	MER ach of 0.018 0.018 0.021 0.016 0.002 0.007 0.003 ch of 0.029 0.029 0.028 0.024	AUC 5% g 0.536 0.535 0.541 0.463 0.591 0.942 0.821 0.936 75% g 0.284 0.284 0.284 0.309 0.407	pAUC enes 0.107 0.107 0.108 0.092 0.118 0.108 0.164 0.187 genes 0.056 0.056 0.056 0.061 0.082
Methods ANOVA SAM LIMMA eLNN EBarrays BetaEB KW Proposed ANOVA SAM LIMMA eLNN EBarrays	TPR 0.941 0.942 0.942 0.942 0.942 0.942 0.9442 0.940 0.941 For 0.398 0.400 0.412 0.445	FPR 0.001 0.001 0.001 0.001 0.001 0.001 1 or 2 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012	TNR thout 0.999 0.999 0.999 0.999 0.999 0.999 0.999 2 outl 0.988 0.988 0.988 0.988 0.988	FNR outly 0.059 0.058 0.058 0.062 0.058 0.058 0.060 0.059 iers w 0.603 0.600 0.600 0.588 0.555	Rest FDR ing ez 0.059 0.058 0.058 0.058 0.058 0.059 in ea 0.059 in ea 0.059 in ea 0.060 0.603 0.600 0.588 0.555	Its fo MER xpress 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.024 0.024 0.024 0.024	r the AUC ions 0.942 0.941 0.944 0.939 0.944 0.941 0.942 10% g 0.397 0.400 0.400 0.412 0.445	large-s pAUC 0.187 0.188 0.188 0.188 0.188 0.188 0.188 0.188 0.188 0.187 genes 0.079 0.080 0.080 0.082 0.089	ample TPR For 0.537 0.537 0.540 0.463 0.590 0.942 0.820 0.935 For 0.285 0.285 0.285 0.310 0.407 0.265	case FPR 1 or 0.009 0.009 0.001 0.004 0.001 1 or 0.015 0.014 0.012 0.015	$\begin{array}{l} (\mathbf{n_1} = \\ \hline \mathbf{TNR} \\ \mathbf{2 out} \\ \mathbf{2 out} \\ 0.991 \\ 0.991 \\ 0.992 \\ 0.992 \\ 0.996 \\ 0.996 \\ 0.999 \\ \mathbf{2 out} \\ 0.985 \\ 0.985 \\ 0.986 \\ 0.988 \\ 0.985 \end{array}$	$\begin{array}{l} \mathbf{n_2} = \\ \overline{\mathrm{FNR}} \\ \overline{\mathrm{liers}} & \mathbf{v} \\ 0.463 \\ 0.463 \\ 0.460 \\ 0.537 \\ 0.410 \\ 0.058 \\ 0.180 \\ 0.065 \\ \overline{\mathrm{iers}} & \mathbf{w} \\ 0.715 \\ 0.690 \\ 0.593 \\ 0.735 \end{array}$	15) FDR vith e 0.463 0.463 0.460 0.537 0.410 0.058 0.180 0.065 ith ea 0.715 0.715 0.690 0.593 0.735	MER ach of 0.018 0.018 0.021 0.002 0.007 0.003 ch of 0.029 0.029 0.028 0.024 0.024	AUC 5% g 0.536 0.535 0.541 0.463 0.591 0.942 0.821 0.936 75% g 0.284 0.284 0.284 0.309 0.407 0.265	pAUC enes 0.107 0.107 0.108 0.092 0.118 0.188 0.164 0.187 genes 0.056 0.056 0.056 0.061 0.082 0.053
Methods ANOVA SAM LIMMA eLNN EBarrays BetaEB KW Proposed ANOVA SAM LIMMA eLNN EBarrays BetaEB	TPR 0.941 0.942 0.942 0.942 0.942 0.942 0.942 0.941 For 0.398 0.400 0.412 0.445 0.940	FPR 0.001 0.001 0.001 0.001 0.001 0.001 1 or 2 0.012 0.0	TNR thout 0.999 0.999 0.999 0.999 0.999 0.999 2 outl 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988	FNR outly 0.059 0.058 0.058 0.062 0.058 0.060 0.059 iers w 0.603 0.600 0.600 0.588 0.555 0.060	Rest FDR ing ex 0.059 0.058 0.058 0.058 0.058 0.058 0.059 inh ea 0.603 0.600 0.558 0.055 0.060	Its fo MER xpress 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.024 0.024 0.024 0.022 0.002	r the AUC ions 0.942 0.941 0.944 0.939 0.944 0.941 0.942 10% g 0.397 0.400 0.400 0.402 0.412 0.445 0.940	large-s pAUC 0.187 0.188 0.188 0.188 0.188 0.188 0.188 0.188 0.187 genes 0.079 0.080 0.080 0.080 0.082 0.089 0.188	ample TPR For 0.537 0.537 0.540 0.463 0.590 0.942 0.820 0.935 For 0.285 0.285 0.285 0.310 0.407 0.265	case FPR 1 or 0.009 0.009 0.001 0.001 0.001 0.0015 0.014 0.012 0.015 0.014	$\begin{array}{l} (\mathbf{n_1} = \\ \hline \mathbf{TNR} \\ \hline \mathbf{2 out} \\ \hline 0.991 \\ 0.991 \\ 0.992 \\ 0.999 \\ 0.996 \\ 0.999 \\ \hline 0.999 \\ \hline 0.985 \\ 0.985 \\ 0.985 \\ 0.985 \\ 0.985 \\ 0.985 \end{array}$	$\begin{array}{r} \mathbf{n_2} = \\ \overline{\mathrm{FNR}} \\ \overline{\mathrm{liers}} & \mathbf{v} \\ 0.463 \\ 0.463 \\ 0.460 \\ 0.537 \\ 0.410 \\ 0.058 \\ 0.180 \\ 0.065 \\ \overline{\mathrm{iers}} & \mathbf{w} \\ 0.715 \\ 0.690 \\ 0.593 \\ 0.735 \\ 0.735 \end{array}$	15) FDR vith e: 0.463 0.463 0.460 0.537 0.410 0.058 0.180 0.065 ith ea 0.715 0.690 0.593 0.735 0.735	MER ach of 0.018 0.018 0.016 0.021 0.002 0.007 0.003 cch of 0.029 0.029 0.029 0.029	AUC 5% g 0.536 0.535 0.541 0.463 0.591 0.942 0.821 0.936 75% g 0.284 0.284 0.284 0.309 0.407 0.265 0.265	pAUC enes 0.107 0.107 0.108 0.092 0.118 0.164 0.187 genes 0.056 0.056 0.056 0.061 0.082 0.053 0.053
Methods ANOVA SAM LIMMA eLNN EBarrays BetaEB KW Proposed ANOVA SAM LIMMA eLNN EBarrays BetaEB KW	TPR 0.941 0.942 0.942 0.942 0.942 0.942 0.942 0.941 For 0.398 0.400 0.400 0.412 0.445 0.940	FPR Wi 0.001 0.001 0.001 0.001 0.001 0.001 1 or 0.012 0.0012 00	TNR thout 0.999 0.999 0.999 0.999 0.999 0.999 2 outl 0.988 0.988 0.988 0.988 0.988 0.988 0.989 0.999 0.999	FNR outly 0.059 0.058 0.062 0.058 0.062 0.058 0.060 0.059 iers w 0.603 0.600 0.588 0.555 0.060 0.588 0.555 0.060	Result FDR 0.058 0.058 0.058 0.058 0.058 0.058 0.059 ith ea 0.603 0.600 0.588 0.600 0.588 0.555 0.0600 0.172	Its for MER 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.024 0.024 0.024 0.022 0.022 0.002 0.022 0.002 0.022	r the AUC 0.941 0.944 0.939 0.943 0.944 0.944 0.941 0.942 10% g 0.400 0.400 0.412 0.445 0.940 0.827	large-s pAUC 0.187 0.188 0.188 0.188 0.188 0.188 0.188 0.186 0.187 genes 0.079 0.080 0.080 0.082 0.089 0.188 0.165	ample TPR 0.537 0.537 0.537 0.537 0.540 0.463 0.590 0.942 0.820 0.935 For 0.285 0.310 0.407 0.265 0.265 0.907	case FPR 0.009 0.009 0.009 0.009 0.011 0.008 0.001 1 or 2 0.015 0.015 0.015 0.015 0.015 0.015	$\begin{array}{l} (\mathbf{n_1} = \\ \hline \mathbf{TNR} \\ \hline \mathbf{2 out} \\ 0.991 \\ 0.991 \\ 0.991 \\ 0.992 \\ 0.999 \\ 0.996 \\ 0.999 \\ \hline 0.996 \\ 0.998 \\ 0.985 \\ 0.985 \\ 0.988 \\ 0.985 \\ 0.985 \\ 0.988 \\ 0.985 \\ 0.988 \\ 0.985 \\ 0.988 \\ 0.985 \\ 0.998 \\ \end{array}$	$\begin{array}{l} \mathbf{n_2} = \\ \hline \mathbf{FNR} \\ \hline \mathbf{FNR} \\ \hline 0.463 \\ 0.463 \\ 0.460 \\ 0.537 \\ 0.410 \\ 0.058 \\ 0.180 \\ 0.065 \\ \hline \mathbf{iers w} \\ 0.715 \\ 0.715 \\ 0.690 \\ 0.593 \\ 0.735 \\ 0.735 \\ 0.092 \end{array}$	15) FDR 0.463 0.463 0.460 0.537 0.410 0.058 0.180 0.065 ith ea 0.715 0.690 0.593 0.735 0.735 0.092	MER ach of 0.018 0.018 0.021 0.002 0.007 0.003 ach of 0.029 0.004 0.	AUC 5% g 0.536 0.541 0.463 0.591 0.942 0.821 0.936 75% g 0.284 0.284 0.309 0.407 0.265 0.265 0.907	pAUC enes 0.107 0.108 0.092 0.118 0.188 0.164 0.187 genes 0.056 0.056 0.061 0.082 0.053 0.053 0.053 0.181

Average performance results for comparison of eight methods ANOVA, SAM, LIMMA, eLNN, EBarrays, BetaEB, KW and Proposed) based on 100 datasets generated using a Bayesian model (EBarrays LNN-model) with m=2 groups/conditions for both small- and large-sample cases (n1=n2=3 and 15). Each dataset for each case contained 300 true DE genes, and the remainder were 19700 true EE genes. The performance measures/indices (PM/PI) TPR, FPR, TNR, FNR, FDR, MER and FDR were calculated for each method based on the top 300 estimated DE genes, under the assumption that the other estimated genes in each dataset for each case were EE genes for each method. The performance measure pAUC was calculated at FPR=0.2 for each method and for each dataset.

2.2. Supplementary Results of Colon Data Analysis

Study	Description	Fold Change	Р	Number of Measured Genes	Overexpression/ Under- expression Gene Rank	References				
	MUC datab	2 is down-reg base	ulated in	colon cancer	according to onco	mine				
1	Colorectal Car- cinoma (41) vs. Normal (5)	-3.797	8.10E-5	19,574	1701 (in top 9%)	Genome Biol 2007/07/05				
2	Colon Adenocar- cinoma (70) vs Normal (21)	-6.478	3.73E-12	19,574	596 (in top 4%)	Clin Exp Metas- tasis 2010/02/01				
4	Colon Carci- noma (5) vs Normal (10)	-17.908	5.00E-5	19,574	1822 (in top 10%)	PLoS One 2010/10/01				
	UBE: datab	2I is upregula base	ated in o	colon cancer a	according to onco	mine				
1	Colon Adenocar- cinoma (18) vs. Normal (18)	1.543	9.02E-5	4,321	136 (in top 4%)	Cancer Res 2001/04/01				
2	Colon Adenocar- cinoma (39) vs. Normal (22)	1.479	9.34E-4	1,527	100 (in top 7%)	Proc Natl Acad Sci U S A 1999/06/08				
	PRIM1 is upregulated in colon cancer according to oncomine database									
1	Colon Carci- noma (5) vs. Normal (10)	2.827	2.39E-4	19,574	4009 (in top 21%)	PLoS One 2010/10/01				
2	Colon Adenocar- cinoma (39) vs Normal (22)	1.418	2.58E-4	1,527	54 (in top 4%)	Proc Natl Acad Sci U S A 1999/06/08				
3	Colon Adenocar- cinoma (102) vs Normal (19)	1.894	2.14E-15	20,423	1027 (in top 6%)	Nature 2012/07/18				
4	Colon Adenocar- cinoma (50) vs Normal (28)	1.426	1.78E-6	9,256	1103 (in top 12%)	Int J Cancer 2007/11/01				
	ADCY2 is down-regulated in colon cancer according to oncomine database									
1	Colon Adenocar- cinoma (50) vs Normal (28)	-1.262	1.36E-7	9,256	399 (in top 5%)	Int J Cancer 2007/11/01				
	POLI datab	D2 is Up-regu base	lated in	colon cancer a	according to onco	mine				
1	Colon Adenocar- cinoma (18) vs Normal (18)	2.172	0.001	4,321	278 (in top 7%)	Cancer Res $2001/04/01$				

Table C: Up/down-regulated in Colon Cancer According to Oncomine Database

Continued on next page

		Tabl	e C - Cor	tinued from preve	ious page				
\mathbf{Study}	Description	Fold Change	Р	Number of Measured Genes	Overexpression/ Under- expression Gene Rank	References			
2	Colon Carci- noma (5) vs. Normal (10)	2.737	7.30E-9	19,574	550 (in top 3%)	PLoS One 2010/10/01			
	\mathbf{REG} datab	1A is upregu base	lated in	colon cancer a	according to onco	mine			
1	Colon Adenocar- cinoma (50) vs. Normal (28)	9,256	1.05E-16	4,321	85 (in top 1%)	Int J Cancer 2007/11/01			
2	Colon Carci- noma (5) vs. Normal (10)	2.523	0.067	19,574	8059 (in top $42%$)	PLoS One 2010/10/01			
GLUT4 is down-regulated in colon cancer according to oncomine database									
1	Colon Adenocar- cinoma (284) vs. Normal (90)	-1.260	1.23E-51	18,823	269 (in top 2%)	Nature 2012/07/18			
2	Colon Adenocar- cinoma (39) vs. Normal (22)	-1.680	0.002	1,527	101 (in top 7%)	PLoS One 2010/10/01			

*Available at: http://www.oncomine.org.

References

[1] Mood AM, Graybill FA and Boes DC. Introduction to the theory of statistics (3rd edition, 1974). McGraw Hill, New York, NY.

[2] Mollah MNH, Minami M, and Eguchi S: Robust prewhitening for ICA by minimizing β -divergence and its application to FastICA. Neural Processing Letters 2007, 25(2), 91-110.
[3] Mollah MNH., Sultana N, Minami M. and Eguchi S: (Robust Extraction of Local Structures by the Minimum

 β -Divergence method. Neural Network 2010, 23, 226-238.