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1. Hybridization of Robustness and Efficiency of Estimation in One-Way ANOVA Using
the Minimum β-Divergence Method

Let xjk be the kth observed random expression of a gene in the jth condition (j = 1, 2, ...,m; k =
1, 2, ..., nj), which follows the one-way ANOVA model as expressed below:

xjk = µj + ϵjk, (1)

where µj is the mean of all expressions of a gene in the jth condition and ϵjk is the random error
term that follows N(0, σ2

j ). We wish to test the null hypothesis (H0) : µ1 = µ2 = ... = µm = µ

against the alternative hypothesis (H1) : H0 is not true, assuming that σ2
1 = σ2

2 = ... = σ2
m = σ2.

Thus, the generalized likelihood-ratio test (LRT) criterion yields the following F -statistic to test H0

against H1:

F =

∑m
j=1 nj(µ̂j − µ̂)2/(m− 1)∑m

j=1

∑nj

k=1(xjk − µ̂j)2/(n−m)

=

∑m
j=1 nj(µ̂j − µ̂)2/(m− 1)

[n1σ̂2
1 + n2σ̂2

2 + ...+ nmσ̂2
m]/(n−m)

, (2)

which follows the F -distribution with (m-1) and (n-m) degrees of freedom under H0 [1], where
n = n1 + n2+, ...,+nm and

µ̂j =
1

nj

nj∑
k=1

xjk, (3)

σ̂2
j =

1

nj

nj∑
k=1

(xjk − µ̂j)
2, (4)

µ̂ =
1

n

m∑
j=1

nj∑
k=1

xjk =
m∑
j=1

nj µ̂j/n. (5)

The critical region (CR) for testing H0 against H1 at the (1-α)100% level of significance is defined
by Pr[F ≥ F0|H0] = α, where F0 = Fα(m − 1, n − m) is the upper 100α% points of the F -
distribution with m − 1 and n − m degrees of freedom. F0 is also known as the cut-off point or
critical value of the test. However, it is obvious that the maximum likelihood estimates (MLEs)

θ̂j = (µ̂j , σ̂
2
j ) of θj = (µj , σ

2
j ) for j = 1, 2, ...,m in the above equations 3 and 5 are highly sensitive to
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outliers. Therefore, the identification of DE genes using classical ANOVA may produce misleading
results because gene expression data are often contains outliers. Thus, in this paper, we consider
the minimum β-divergence method [2, 3] to improve the robustness and efficiency of estimation

in one-way ANOVA. The minimum β-divergence estimators θ̂j,β = (µ̂j,β , σ̂
2
j,β) of the parameters

θj = (µj , σ
2
j ) are computed iteratively as follows:

µj,t+1 =

∑nj

k=1 ϕβ(xjk|θj,t)xjk∑nj

k=1 ϕβ(xjk|θj,t)
(6)

and

σ2
j,t+1 =

∑nj

k=1 ϕβ(xjk|θj,t)(xjk − µj,t)
2

(β + 1)−1
∑nj

k=1 ϕβ(xjk|θj,t)
, (7)

where

Wβ(xjk|θj) = exp{− β

2σ2
j

(xjk − µj)
2}, (8)

which we call the β-weight function [2, 3]. The notation θt+1 represents the update to θt in the
(t+1)th iteration. The robustness of these estimators is discussed in the context of influence functions

in [2], and their consistency is discussed in [3]. The minimum β-divergence estimators θ̂j,β =
(µ̂j,β , σ̂

2
j,β) of the parameters θj = (µj , σ

2
j ) can tolerate up to 50% outlying expressions/observations

in the dataset if appropriate initial values are chosen for θj in equations 6 and 8). To obtain these
appropriate initial values, we define a dataset D0

j ⊂ Dj = {xjk; k = 1, 2, ..., nj} as follows:

D0
j = {xjk ∈ Dj ; |xjk − x0

j | < x1
j , k = 1, 2, ..., nj}, (9)

where x0
j and x1

j are the medians of Xj and |Xj − x0
j |, respectively. Then, the appropriate initial

value for θj = (µj , σ
2
j ) is computed using the classical estimators (equations 3 and 4) based on the

sub-dataset D0
j . For β=0, the minimum β-divergence estimators θ̂j,β (equations 6 and 7) reduce to

the non-iterative MLEs θ̂j (equations 3 and 4).

It is well known that MLE is more efficient than any robust estimator in the absence of outliers.
Therefore, in this paper, an attempt is made to develop a hybrid approach in which the classical
estimators θ̂j (equations 3 and 4) are used in the absence of outliers and the minimum β-divergence

estimators θ̂j,β (equations 6 and 7) are used in the presence of outliers for the estimation of θj in
one-way ANOVA. The minimum β-divergence method offers two approaches to unifying robustness
and efficiency of estimation in ANOVA. One method is to select the tuning parameter β via cross-
validation (CV), as discussed in detail in a previous publication [2]. In the absence of outliers,
the CV method produces β=0 for the minimum β-divergence estimators and is thus equivalent to
the classical estimators, as discussed above. In the presence of outliers, it produces β > 0 for the
minimum β-divergence estimators. To develop the alternative approach, we consider the β-weight
function (equation 8) with β = 0.2 for outlier detection. This weight function assigns smaller weights
(≥ 0) to outlier observations and larger weights (≤ 1) for no outlying observations. A gene expression
xjk is defined based on the β-weight function as follows, depending on whether it is contain outlier
or not:

Wβ(xjk|θ̂j,β) =

{
> δj , if xjk is not outlying
≤ δj , if xjk is outlying,

(10)

where the threshold value δj is the quantile value of Wβ(xjk|θ̂j,β) with probability

Pr{Wβ(xjk|θ̂j,β) ≤ δj} ≤ p = 10−5. (11)
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Here, the derivation of the distributional form of Wβ(xjk|θ̂j,β) is not a tractable problem. However,

if we assume that θ̂j,β = θj (good fit), then we can consider the distribution

Wβ(xjk|θ̂j,β) 
2

β × δj
fχ2

(1)
(− 2

β
log δj), (12)

where χ2
(1) denotes the chi-square variable with 1 degree of freedom, which assumes values of

− 2
β log δj , where 0 < δj ≤ 1. We can also simulate the distribution of Wβ(yj |θ̂j,β) to obtain

the threshold value δj , where the values of the yjs are simulated based on the normal distribution
with mean µ̂j,β and variance σ̂2

j,β . Thus, we can unify the minimum β-divergence estimator with
MLE for θj in the jth condition as follows:

θ̂j,β =


θ̂j,β , if

∑nj

k=1 I[Wβ(xjk|θ̂j,β)>δj ]
< nj ,

θ̂j , if
∑nj

k=1 I[Wβ(xjk|θ̂j,β)>δj ]
= nj .

Then, the modified F-statistic, denoted by Fβ , is given by

Fβ =

∑k
j=1 nj(µ̂j,β − µ̂β)

2/(k − 1)

[n1σ̂2
1,β + n2σ̂2

2,β + ...+ nmσ̂2
m,β ]/(n−m)

. (13)

To test the null hypothesis (H0) against the alternative hypothesis (H1) from the robustness per-
spective, we can compute p-values under the assumption that Fβ approximately follows the F -
distribution. Note that this modified F-statistic (Fβ) reduces to the classical F-statistic (equation
2) for β = 0. However, we can also compute permutation-based p-values to test whether H0 is true
or false. To compute permutation-based p-values, we first compute the value of Fβ as defined by
equation 13 based on the given dataset. Then, we permute the values of the given dataset of all
conditions N times, and each time, we compute Fβ . Finally, we compute the p-values for testing H0

against H1 using the following formula:

p-value =
N∑

k=1

I[F̂β(k)≤F̂β ]
/N, (14)

where F̂β denotes the estimate of Fβ obtained for the given dataset and F̂β(k) denotes the estimate
of Fβ obtained for the kth permutation of the values of the response variable in the dataset. Note
that for β=0, Fβ reduces to the classical F -statistic.

2. Supplementary Results for simulated and Real Gene-Expressions Datasets

Performance investigation for the proposed method against other eight several methods based on
simulated gene-expression profiles under m=2 conditions in subsection 2.1. Supplementary results
of the proposed method for the real gene expression colon cancer dataset is given in the following
subsection 2.2. Discussions about these supplementary results are given in the main text.
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2.1. Performance evaluation based on simulated gene expression profiles with m=2 con-
ditions for both small- and large-sample cases

Table A: Performance evaluation based on simulated gene expression profiles with m=2 conditions
for the small-sample case (n1 = n2 = 4)

Results for the small-sample case (n1 = n2 = 4)
Methods TPR FPR TNR FNR FDR MER AUC pAUC TPR FPR TNR FNR FDR MER AUC pAUC

Without outlying expressions For 1 outlier with each of 5% genes
ANOVA 0.928 0.001 0.999 0.072 0.072 0.003 0.916 0.183 0.472 0.011 0.989 0.527 0.527 0.021 0.473 0.094
SAM 0.940 0.001 0.999 0.060 0.060 0.002 0.939 0.188 0.477 0.011 0.989 0.522 0.522 0.021 0.476 0.095
LIMMA 0.945 0.001 0.999 0.055 0.055 0.002 0.944 0.189 0.475 0.011 0.989 0.525 0.525 0.021 0.477 0.095
eLNN 0.927 0.001 0.999 0.072 0.072 0.003 0.926 0.185 0.425 0.012 0.988 0.575 0.575 0.023 0.424 0.085
EBarrays 0.932 0.001 0.999 0.068 0.068 0.003 0.933 0.186 0.398 0.012 0.988 0.603 0.603 0.024 0.399 0.080
BetaEB 0.932 0.001 0.999 0.068 0.068 0.003 0.931 0.186 0.930 0.001 0.999 0.070 0.070 0.003 0.931 0.186
KW 0.948 0.001 0.999 0.052 0.052 0.002 0.949 0.190 0.477 0.011 0.989 0.522 0.522 0.021 0.476 0.096
Proposed 0.928 0.001 0.999 0.072 0.072 0.003 0.918 0.183 0.925 0.002 0.998 0.075 0.075 0.003 0.917 0.183

For 1 outlier with each of 10% genes For 1 outlier with each of 75% genes
ANOVA 0.320 0.014 0.986 0.680 0.680 0.027 0.321 0.064 0.087 0.019 0.981 0.912 0.912 0.036 0.087 0.018
SAM 0.325 0.014 0.986 0.675 0.675 0.027 0.324 0.065 0.087 0.019 0.981 0.912 0.912 0.036 0.086 0.018
LIMMA 0.323 0.014 0.986 0.677 0.677 0.027 0.323 0.064 0.092 0.019 0.981 0.907 0.907 0.036 0.091 0.018
eLNN 0.258 0.015 0.985 0.743 0.743 0.030 0.256 0.051 0.040 0.020 0.980 0.960 0.960 0.038 0.041 0.008
EBarrays 0.230 0.016 0.984 0.770 0.770 0.031 0.231 0.046 0.032 0.020 0.980 0.968 0.968 0.039 0.033 0.006
BetaEB 0.930 0.001 0.999 0.070 0.070 0.003 0.931 0.186 0.032 0.020 0.980 0.968 0.968 0.039 0.031 0.006
KW 0.323 0.014 0.986 0.677 0.677 0.027 0.324 0.064 0.087 0.019 0.981 0.912 0.912 0.036 0.086 0.018
Proposed 0.924 0.002 0.998 0.076 0.076 0.003 0.916 0.183 0.907 0.002 0.998 0.092 0.092 0.004 0.908 0.181

Average performance results of eight methods (ANOVA, SAM, LIMMA, eLNN, EBarrays, BetaEB, KW and
Proposed) based on 100 datasets generated using a one-way ANOVA model with m=2 groups/conditions and
σ2 = 0.05 for sample size n1=n2=4. Each dataset for each case contained 300 true DE genes, and the remainder
were 19700 true EE genes. The performance indices/measures TPR, FPR, TNR, FNR, FDR, MER and AUC were
calculated for each method based on the top 300 estimated DE genes, under the assumption that the other
estimated genes in each dataset for each case were EE genes for each method. The performance measure pAUC was
calculated at FPR=0.2 for each method and for each dataset.
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Table B: Performance evaluation based on simulated gene expression profiles using a Bayesisn model
(EBarrays LNN-model) with m=2 conditions

Results for the small-sample case (n1 = n2 = 3)
Methods TPR FPR TNR FNR FDR MER AUC pAUC TPR FPR TNR FNR FDR MER AUC pAUC

Without outlying expressions For 1 outlier with each of 5% genes
ANOVA 0.818 0.005 0.995 0.182 0.182 0.010 0.803 0.159 0.420 0.012 0.988 0.580 0.580 0.023 0.419 0.084
SAM 0.760 0.005 0.995 0.240 0.240 0.010 0.761 0.152 0.420 0.012 0.988 0.580 0.580 0.023 0.422 0.084
LIMMA 0.797 0.004 0.996 0.203 0.203 0.008 0.796 0.159 0.425 0.012 0.988 0.575 0.575 0.023 0.424 0.085
eLNN 0.820 0.004 0.996 0.180 0.180 0.007 0.822 0.164 0.453 0.011 0.989 0.547 0.547 0.022 0.453 0.089
EBarrays 0.823 0.004 0.996 0.177 0.177 0.007 0.824 0.164 0.388 0.012 0.988 0.613 0.613 0.024 0.386 0.077
BetaEB 0.823 0.004 0.996 0.177 0.177 0.007 0.822 0.164 0.823 0.004 0.996 0.177 0.177 0.007 0.823 0.164
KW 0.850 0.003 0.997 0.150 0.150 0.004 0.795 0.181 0.460 0.011 0.989 0.540 0.540 0.022 0.461 0.092
Proposed 0.818 0.005 0.995 0.182 0.182 0.010 0.803 0.159 0.815 0.009 0.991 0.185 0.185 0.009 0.802 0.158

For 1 outlier with each of 10% genes For 1 outlier with each of 75% genes
ANOVA 0.282 0.015 0.985 0.718 0.715 0.029 0.283 0.056 0.077 0.019 0.981 0.922 0.922 0.037 0.078 0.015
SAM 0.282 0.015 0.985 0.718 0.718 0.029 0.284 0.056 0.082 0.019 0.981 0.917 0.917 0.037 0.083 0.016
LIMMA 0.285 0.015 0.985 0.715 0.715 0.029 0.283 0.057 0.082 0.019 0.981 0.917 0.917 0.037 0.081 0.016
eLNN 0.338 0.014 0.986 0.662 0.662 0.026 0.337 0.066 0.075 0.019 0.981 0.925 0.925 0.037 0.076 0.015
EBarrays 0.235 0.016 0.984 0.765 0.765 0.031 0.238 0.047 0.035 0.020 0.980 0.965 0.965 0.039 0.036 0.007
BetaEB 0.818 0.004 0.996 0.182 0.182 0.007 0.818 0.163 0.035 0.020 0.980 0.965 0.965 0.039 0.033 0.007
KW 0.305 0.014 0.986 0.695 0.695 0.028 0.305 0.062 0.077 0.019 0.981 0.922 0.922 0.037 0.077 0.015
Proposed 0.816 0.010 0.990 0.184 0.184 0.009 0.805 0.158 0.813 0.10 0.990 0.187 0.187 0.011 0.727 0.154

Results for the large-sample case (n1 = n2 = 15)
Methods TPR FPR TNR FNR FDR MER AUC pAUC TPR FPR TNR FNR FDR MER AUC pAUC

Without outlying expressions For 1 or 2 outliers with each of 5% genes
ANOVA 0.941 0.001 0.999 0.059 0.059 0.002 0.942 0.187 0.537 0.009 0.991 0.463 0.463 0.018 0.536 0.107
SAM 0.942 0.001 0.999 0.058 0.058 0.002 0.941 0.188 0.537 0.009 0.991 0.463 0.463 0.018 0.535 0.107
LIMMA 0.942 0.001 0.999 0.058 0.058 0.002 0.944 0.188 0.540 0.009 0.991 0.460 0.460 0.018 0.541 0.108
eLNN 0.938 0.001 0.999 0.062 0.062 0.002 0.939 0.185 0.463 0.011 0.989 0.537 0.537 0.021 0.463 0.092
EBarrays 0.942 0.001 0.999 0.058 0.058 0.002 0.943 0.188 0.590 0.008 0.992 0.410 0.410 0.016 0.591 0.118
BetaEB 0.942 0.001 0.999 0.058 0.058 0.002 0.944 0.188 0.942 0.001 0.999 0.058 0.058 0.002 0.942 0.188
KW 0.940 0.001 0.999 0.060 0.060 0.002 0.941 0.186 0.820 0.004 0.996 0.180 0.180 0.007 0.821 0.164
Proposed 0.941 0.001 0.999 0.059 0.059 0.002 0.942 0.187 0.935 0.001 0.999 0.065 0.065 0.003 0.936 0.187

For 1 or 2 outliers with each of 10% genes For 1 or 2 outliers with each of 75% genes
ANOVA 0.398 0.012 0.988 0.603 0.603 0.024 0.397 0.079 0.285 0.015 0.985 0.715 0.715 0.029 0.284 0.056
SAM 0.400 0.012 0.988 0.600 0.600 0.024 0.400 0.080 0.285 0.015 0.985 0.715 0.715 0.029 0.284 0.056
LIMMA 0.400 0.012 0.988 0.600 0.600 0.024 0.400 0.080 0.310 0.014 0.986 0.690 0.690 0.028 0.309 0.061
eLNN 0.412 0.012 0.988 0.588 0.588 0.024 0.412 0.082 0.407 0.012 0.988 0.593 0.593 0.024 0.407 0.082
EBarrays 0.445 0.011 0.989 0.555 0.555 0.022 0.445 0.089 0.265 0.015 0.985 0.735 0.735 0.029 0.265 0.053
BetaEB 0.940 0.001 0.999 0.060 0.060 0.002 0.940 0.188 0.265 0.015 0.985 0.735 0.735 0.029 0.265 0.053
KW 0.828 0.004 0.996 0.172 0.172 0.007 0.827 0.165 0.907 0.002 0.998 0.092 0.092 0.004 0.907 0.181
Proposed 0.932 0.001 0.999 0.068 0.068 0.003 0.935 0.186 0.930 0.001 0.999 0.070 0.070 0.003 0.930 0.184

Average performance results for comparison of eight methods ANOVA, SAM, LIMMA, eLNN, EBarrays, BetaEB,
KW and Proposed) based on 100 datasets generated using a Bayesisn model (EBarrays LNN-model) with m=2
groups/conditions for both small- and large-sample cases (n1=n2 = 3 and 15). Each dataset for each case contained
300 true DE genes, and the remainder were 19700 true EE genes. The performance measures/indices (PM/PI) TPR,
FPR, TNR, FNR, FDR, MER and FDR were calculated for each method based on the top 300 estimated DE genes,
under the assumption that the other estimated genes in each dataset for each case were EE genes for each method.
The performance measure pAUC was calculated at FPR=0.2 for each method and for each dataset.
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2.2. Supplementary Results of Colon Data Analysis

Table C: Up/down-regulated in Colon Cancer According to Oncomine Database

Study Description Fold Change P Number of
Measured
Genes

Overexpression/
Under-
expression
Gene Rank

References

MUC2 is down-regulated in colon cancer according to oncomine
database

1 Colorectal Car-
cinoma (41) vs.
Normal (5)

-3.797 8.10E-5 19,574 1701 (in top 9%) Genome Biol 2007/07/05

2 Colon Adenocar-
cinoma (70) vs
Normal (21)

-6.478 3.73E-12 19,574 596 (in top 4%) Clin Exp Metas-
tasis 2010/02/01

4 Colon Carci-
noma (5) vs
Normal (10)

-17.908 5.00E-5 19,574 1822 (in top 10%) PLoS One 2010/10/01

UBE2I is upregulated in colon cancer according to oncomine
database

1 Colon Adenocar-
cinoma (18) vs.
Normal (18)

1.543 9.02E-5 4,321 136 (in top 4%) Cancer Res 2001/04/01

2 Colon Adenocar-
cinoma (39) vs.
Normal (22)

1.479 9.34E-4 1,527 100 (in top 7%) Proc Natl Acad
Sci U S A
1999/06/08

PRIM1 is upregulated in colon cancer according to oncomine
database

1 Colon Carci-
noma (5) vs.
Normal (10)

2.827 2.39E-4 19,574 4009 (in top 21%) PLoS One 2010/10/01

2 Colon Adenocar-
cinoma (39) vs
Normal (22)

1.418 2.58E-4 1,527 54 (in top 4%) Proc Natl Acad
Sci U S A
1999/06/08

3 Colon Adenocar-
cinoma (102) vs
Normal (19)

1.894 2.14E-15 20,423 1027 (in top 6%) Nature
2012/07/18

4 Colon Adenocar-
cinoma (50) vs
Normal (28)

1.426 1.78E-6 9,256 1103 (in top 12%) Int J Cancer 2007/11/01

ADCY2 is down-regulated in colon cancer according to oncomine
database

1 Colon Adenocar-
cinoma (50) vs
Normal (28)

-1.262 1.36E-7 9,256 399 (in top 5%) Int J Cancer 2007/11/01

POLD2 is Up-regulated in colon cancer according to oncomine
database

1 Colon Adenocar-
cinoma (18) vs
Normal (18)

2.172 0.001 4,321 278 (in top 7%) Cancer Res 2001/04/01

Continued on next page
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Table C — Continued from previous page
Study Description Fold Change P Number of

Measured
Genes

Overexpression/
Under-
expression
Gene Rank

References

2 Colon Carci-
noma (5) vs.
Normal (10)

2.737 7.30E-9 19,574 550 (in top 3%) PLoS One 2010/10/01

REG1A is upregulated in colon cancer according to oncomine
database

1 Colon Adenocar-
cinoma (50) vs.
Normal (28)

9,256 1.05E-16 4,321 85 (in top 1%) Int J Cancer 2007/11/01

2 Colon Carci-
noma (5) vs.
Normal (10)

2.523 0.067 19,574 8059 (in top 42%) PLoS One 2010/10/01

GLUT4 is down-regulated in colon cancer according to oncomine
database

1 Colon Adenocar-
cinoma (284) vs.
Normal (90)

-1.260 1.23E-51 18,823 269 (in top 2%) Nature 2012/07/18

2 Colon Adenocar-
cinoma (39) vs.
Normal (22)

-1.680 0.002 1,527 101 (in top 7%) PLoS One 2010/10/01

*Available at: http://www.oncomine.org.
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