Additional files

Additional Tables:

Table S1. Bacterial strains and plasmids used in this work

Strains	Relevant characteristics	Reference
Rhizobial strains		
<i>R. etli</i> CFN42	Wild type	[1]
Ret Tn7Km	CFN42 mini-Tn7Km, Km ^R	This work
Ret Tn7pleD*Km	CFN42 mini-Tn7pleD*Km, Km ^R	This work
Ret Tn7Tc	CFN42 mini-Tn7Tc, Tc ^R	This work
Ret Tn7pleD*Tc	CFN42 mini-Tn7pleD*Tc, Tc ^R	This work
Ret Tn7pleD*	CFN42 mini-Tn7pleD*	This work
R. leguminosarum by. viciae	Wild type, Sm ^R	[2]
UPM791		
Rle Tn7Km	UPM791 mini-Tn7Km, Km ^R	This work
Rle Tn7pleD*Km	UPM791 mini-Tn7pleD*Km, Km ^R	This work
Rle Tn7Tc	UPM791 mini-Tn7Tc, Tc ^R	This work
S. meliloti 8530	$ExpR^+$ derivative of Rm1021, Sm ^R	[3]
Sme Tn7Km	8530 mini-Tn7Km, Km ^R	This work
Sme Tn7pleD*Km	8530 mini-Tn7pleD*Km, Km ^R	This work
Sme Tn7Tc	8530 mini-Tn7Tc, Tc ^R	This work
Sme Tn7pleD*Tc	8530 mini-Tn7pleD*Tc, Tc ^R	This work
Pseudomonas strains	• /	
<i>P. svringae</i> pv. tomato	Rif ^R	[4]
DC3000		
Pto Tn7Km	DC3000 mini-Tn7Km. Km ^R	This work
Pto Tn7pleD*Km	DC3000 mini-Tn7pleD*Km, Km ^R	This work
Pto Tn7Tc	DC3000 mini-Tn7Tc, Tc^{R}	This work
Pto Tn7pleD*Tc	DC3000 mini-Tn7pleD*Tc, Tc ^R	This work
E. coli strains	1	
TOP10	F mcrA Δ (mrr-hsdRMS-mcrBC)	Invitrogen®
	$\Phi 80 lac Z \Lambda M15 \Lambda lac X74 rec A1.$	
	araD139. Δ (ara-leu)7697. galU.	
	galK. $rnsL(Str^r)$ endA1.nunG λ -	
82163	MG1655AdanA(erm-nir)RP4-	[5]
P	2. $Tc::Mu, Km^r, Em^r$	[-]
82155	$RP4-2-Tc::Mu \land dan \land::(erm-nir)$	[5]
P	thrB1004, pro. thi, strA, hsdS, lacZ	r. 1
	AM15. (F' lacZ $AM15.$ lacIa. traD36	
	$proA+, proB+) Km^r, Sm^r, Em^r$	
Plasmids	<u> </u>	
pJB3Tc19	IncP cloning vector An ^R Tc ^R	[6]
nJBnleD*	nIB3Tc19 bearing <i>nleD</i> * gene	[7]
pCR®-XL-TOPO [®]	Cloning vector Km ^R	Invitrogen®
pTOPO-pleD*	pCR®-XL-TOPO [®] with a 1784 hn	This work
Prof o pro-	fragment containing $nleD*$ Km ^R	21115 WOIN
pUC18T-mini-Tn7T	pUC18 with mini-Tn7 transposon	[8]
	Ap^{R} ,	r~1

mini-Tn7pleD*	pUC18T-mini-Tn7T with the EcoRI/SacI fragment containing <i>pleD</i> * Ap ^R ,	This work
mini-Tn7pleD*Km	mini-Tn7pleD* with 1.2 Kb KpnI fragment containing Km marker Ap ^R , Km ^R ,	This work
mini-Tn7Km	mini-Tn7pleD*Km with a 1114 bp NcoI internal deletion of <i>pleD</i> * Ap ^R , Km ^R ,	This work
mini-Tn7pleD*Tc	mini-Tn7pleD* with 1.3 Kb KpnI fragment containing Tc marker Ap ^R , Tc ^R	This work
mini-Tn7Tc	mini-Tn7pleD*Tc with a 1114 bp NcoI internal deletion, Ap ^R , Tc ^R	This work
pUX-BF13	Helper plasmid providing the Tn7 transposition functions in trans, Ap ^R , mob+, ori-R6K	[9]
p34S-Tc	Plasmid containing a Tc marker, Tc ^R	[10]
P34S-Km	Plasmid containing a Km marker, Km ^R	[10]
pQE-80L	Expression vector, Ap ^R	Invitrogen®
pBBR1MCS-5	Cloning vector, Gm ^{R⁻}	[11]
pBBRlacI ^q	pBBR1MCS-5 with a McsI 1610 bp fragment containing the $lacI^q$ gene, Gm^R	This work

Name	Sequence 5'-3'	Used in	
pJB3Tc19-F	GCCTCTTCGCTATTACGCC	<i>pleD</i> * amplification from	
pleDTn7	GAGCTCACGCAAACCGCCTCTCC	pJBpleD*	
pTn7L	ATTAGCTTACGACGCTACACCC	Verification of insertion under	
pTn7R	CACAGCATAACTGGACTGATTTC	glmS region	
glmS1etF	CCTGTTATCGTCATTGCTCC	Verification of insertion in Ret	
glmS1etR	CGACAGCAATCAGCAGGC	under glmS1 region	
glmS_pstF	TGGCGAACTCAAACACGG	Verification of insertion in Pto	
glmS_pstR	TACCGAGTAGAACCTCCTTAGC	under glmS region	
glmS_legF	CCTGTCATCGTCATCGCC	Verification of insertion in Rle	
glmS_legR	GCACGACGGCGATCAGC	under glmS region	
glmS_rmF	CCACGCCGAAGGTTACG	Verification of insertion in Sm	
glmS_rmR	AGGCTCGTTGCGGAACC	under glmS region	
		Verification of insertion in Sm	
Km_nodM	GCGAGGICAGIGIAGAACG	under <i>nodM</i> region	
RT_pleDF	AATGTCCGCCTGCTTGA	<i>pleD</i> * expression by qRT-PCR	
RT_pleDR	CAGAATGATGTCGGGCAG		
Rm 16S F	TCTACGGAATAACGCAGG	16S rRNA gene of Sme for qRT-	
Rm 16S R	GTGTCTCAGTCCCAATGT	PCR	
F-RT-16S	ACACCGCCCGTCACACCA	16S rRNA gene of Pto for qRT-	
R-RT-16S	GTTCCCCTACGGCTACCTT	PCR	

Table S2. Primers used in this work.

Additional Figures

Figure S1. Congo red (CR) and calcofluor (CF) staining of *R. etli* CFN42 (Ret), *S. meliloti* 8530 (Sme), *R. leguminosarum* bv. viciae UPM791 (Rle) and *P. syringae* pv.tomato DC3000 (Pto) expressing *pleD** in single and multiple copies and their respectives control strains. Bacteria were grown on solid YGT, for Rle, or MM plates, for the rest of the strains, supplemented with congo red (CR; 125 μ g/ml) or with calcofluor (CF; 200 μ g/ml). Calcofluor binding was observed under UV light. CR and CF plates were photographed after 3 days incubation at 28°C for rhizobial strains and for *Pseudomonas*.

Figure S2. Biofilm formation by *Rhizobium etli* CFN42 (Ret) and *Rhizobium leguminosarum* bv. viciae UPM791 (Rle) strains expressing *pleD** in multicopy (pJBpleD*), single copy (Tn7pleD*Km) and the control strain without *pleD** (Tn7Km). Quantification of biofilm formation by crystal violet (CV) after 72h of growth in MM in a 96-well plate at 28 °C. Bars represent the mean of eight wells from three biologial replicates \pm standard error.

Figure S3. Motility reduction in mini-Tn7pleD* strains. (A) Surface motility of Pto strains after 24h at 28°C onto semisolid MM plates (see methods). B) Swimming motility of Rle after 72h growing at 28 °C. Pictures show a representative migration zone of each strain. At least three motility plates from three independent cultures per strain were used.

Figure S4. Stability of mini-Tn7pleD* in *Rhizobium etli* CFN42 (Ret) under non selective conditions. Ret strains with a plasmid-encoded (pJBpleD*) or chromosomally integrated *pleD** gene (Tn7pleD*Tc), were assayed for A) swimming motility or B) exopolysaccharide production by Congo Red (CR) staining in the presence and absence of tetracycline. (A) Swimming plates were imaged after 120 h at 28 °C in semisolid Bromfield medium. (B) Colonies imaged after growth on solid MM plates supplemented with CR; 125 μ g/ml, at 28°C for 120 h. Representative pictures of at least three different plates from three independent cultures of each strain are shown.

Figure S5. Control expression of *pleD** by *lacI*^q/IPTG. Colony morphology of *S. meliloti* (Sme) after two days growth on MM plates supplemented with Congo Red (CR), with and without the inducer IPTG (1mM): Sme Tn7pleD*Km pBBR1MCS5 (1), Sme Tn7pleD*Km pBBRlacI^q (2) and Sme Tn7Km (3). Scale bar is depicted. Representative pictures of at least three different plates from three independent cultures of each strain are shown.

References of additional material

- Quinto C, De L, V, Flores M, Leemans J, Cevallos MA, Pardo MA, Azpiroz R, De Lourdes GM, Calva E, Palacios R: Nitrogenase reductase: A functional multigene family in *Rhizobium phaseoli*. *ProcNatlAcadSciUSA* 1985, 82(4):1170-1174.
- 2. Leyva A, Palacios JM, Mozo T, Ruiz-Argueso T: Cloning and characterization of hydrogen uptake genes from *Rhizobium leguminosarum*. *JBacteriol* 1987, **169**(11):4929-4934.
- 3. Pellock BJ, Teplitski M, Boinay RP, Bauer WD, Walker GC: A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by *Sinorhizobium meliloti*. *Journal of bacteriology* 2002, **184**(18):5067-5076.
- 4. Cuppels DA: Generation and Characterization of Tn5 Insertion Mutations in *Pseudomonas syringae* pv. tomato. *ApplEnvironMicrobiol* 1986, **51**(2):323-327.
- 5. Demarre G, Guerout AM, Matsumoto-Mashimo C, Rowe-Magnus DA, Marliere P, Mazel D: A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncPalpha) conjugative machineries and their cognate *Escherichia coli* host strains. *ResMicrobiol* 2005, 156(2):245-255.
- 6. Blatny JM, Brautaset T, Winther-Larsen HC, Haugan K, Valla S: Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. *ApplEnvironMicrobiol* 1997, **63**(2):370-379.
- Pérez-Mendoza D, Aragon IM, Prada-Ramírez HA, Romero-Jiménez L, Ramos C, Gallegos MT, Sanjuán J: Responses to elevated c-di-GMP levels in mutualistic and pathogenic plant-interacting bacteria. *PloS one* 2014, 9(3):e91645.
- 8. Choi KH, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR, Schweizer HP: **A Tn7-based broad-range bacterial cloning and expression** system. *NatMethods* 2005, **2**(6):443-448.
- 9. Bao Y, Lies DP, Fu H, Roberts GP: An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteria. *Gene* 1991, **109**(1):167-168.
- 10. Dennis JJ, Zylstra GJ: **Plasposons: modular self-cloning minitransposon** derivatives for rapid genetic analysis of gram-negative bacterial genomes. *ApplEnvironMicrobiol* 1998, **64**(7):2710-2715.
- Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM: Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. *Gene* 1995, 166(1):175-176.