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1 Background

In the first section we provide details of conventional modelling techniques that we incorpo-
rate in our framework.

1.1 Calculating sensitivities of ODE models

The methodology developed in this paper can in principle be applied to analyse any ordinary
differential equation model. Precisely, we consider

dy

dt
= F (y, θ), (1)

where y = (y1, ..., yk) ∈ Rk is a system’s state; F () is a law, which determines temporal
evolution of y; and θ = (θ1 . . . , θl) ∈ θ ⊂ Rl is a vector of model parameters. For simplicity,
instead of writing solution of (1) as a function of the time, t; an initial condition, y0; and
the parameters, θ we write simply y(t). Without loss of generality, we assume that the first
q components of y denoted by y(q) = (y1, ..., yq) contain model variables that are of interest.
These components evaluated at specified times are denoted by Y = (y(q)(t1), ..., y

(q)(tn)).
The relationship between the mechanistic model (1) and experimental observations, X, is
defined as

X = (yq(t1) + ε1, . . . , yq(tn) + εn), (2)
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where εi is a multivariate measurement noise. In the examples studied, without loss of
generality, we assume the noise to be multivariate normal (MVN), εi ∼ MVN(0, Dεi) with
Dεi , being a diagonal matrix of measurement variances. In this setting X ∼ MVN(Y,D),
where D is a matrix that contains matrices Di on its diagonal.
The derivative of solution of the equation (1), y(t), with respect to the parameter θi, zi(t) =
∂y(t)
∂θi

is described by an another ODE [1]

dzi(t)

dt
= ∇yF (y(t), θ)zi(t) +

∂F (y(t), θ)

∂θi
, (3)

where ∇yF (y(t), θ) is the Jacobian matrix of F () with respect to y. Evaluation of zi(t) at the
times and components of interests defines the sensitivity vector Si =

(
z(q)(t1), ..., z

(q)(tn)
)

of the parameter θi. A collection of the sensitivity vectors for all i = 1, ..., l constitutes the
sensitivity matrix S = (S1, ..., Sl).
The Fisher information matrix (FIM) of the MVN with density P (X|θ) defined as

FIi,j(θ) = E

(
∂ log(P (X|θ))

∂θi

∂ log(P (X|θ))
∂θj

)
can be written in terms of sensitivity vectors [2]

FI(θ) =
1

σ2
STD−1S. (4)

For convenience and without loss of generality in the paper we assumed D = I, where I is
the identity matrix.

1.2 Logarithmic parametrisation

Throughout the paper we parametrise models in terms of logarithms of their parameters,
log(θi). For notational convenience we write simply θi instead of log(θi).

1.3 Shannon Mutual Information

In the paper we use mutual information to measure similarity between groups of parameters.
Parameters estimates are treated as random variables. First we introduce definition of
mutual information and consider general random variables U and V having a joint probability
distribution P (U, V ) and marginal distributions P (U), P (V ). Using the Shannon entropy
[3], uncertainty associated with a random variable is given as

H(U) = −
∫
P (U) log(P (U))dU. (5)
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Analogously the uncertainty of U conditioned on a given value of V = v is given by condi-
tional entropy

Hv(U) = −
∫
P (U |V = v) log(P (U |V = v))dU. (6)

Averaging over all possible values of V we have average conditional entropy

H(U |V ) = −
∫
Hv(U) log(P (v))dv. (7)

Using the above notions the average reduction in entropy of U resulting from knowing V is
given by the Shannon mutual information

I(U, V ) = H(U)−H(U |V ). (8)

2 Mutual information - canonical correlation analysis

(MI-CCA)

Below we explain calculation of I(θA, θB) using CCs directly from Fisher information matrix.
Assume, data X(i), i = 1, ..., N are independent measurements of Y for given parameters θ.
Under certain general assumptions the distribution of the maximum likelihood estimator or
equivalently maximum a posteriori estimator θ̂ is asymptotically multivariate normal [4]

P (θ̂|θ) ∝ exp(− 1

2N
(θ̂ − θ)FI(θ)(θ̂ − θ)T ). (9)

See conditions A1-A9 in [5] or Bernstein-von Mises Theorem in [6] for details.
Suppose θ = (θA, θB), θA = (θ1, ..., θm) and θB = (θm+1, ..., θl). Given the equation (9) we can
divide the Fisher information matrix and the covariance matrix Σ = FI−1 into components
corresponding to θA and θB

Σ =

(
ΣAA ΣAB

ΣBA ΣBB

)
(10)

and

FI =

(
FIAA FIAB
FIBA FIBB

)
. (11)

The mutual information formula for the multivariate normal can be easily computed using
one of the following well known formulae [7]

I(θA, θB) = −1

2
log

( |Σ|
|ΣA||ΣB|

)
(12)
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or

I(θA, θB) = −1

2

k∑
j=1

log(1− (ρMj )2) (13)

where | · | denotes the determinant of a matrix and ρMi are canonical correlations calculated
from Σ. Precisely

ρMi = max
wi

A,w
i
B

 wiA
T

ΣABw
i
B√

wiA
T

ΣAAwiAw
i
B
T

ΣBBwiB

 (14)

subject to (i 6= j)

wiA
T

ΣAAw
j
A = 0,

wiB
T

ΣBBw
j
B = 0,

and
wiA

T
ΣABw

j
B = 0

for i = min(m, l −m) and j < i. The formulae (12) and (13) have however two strong dis-
advantages: involve inversion of the FIM, and requires division by the matrix determinant,
which can be close to zero.

Therefore we propose a new approach that avoids these difficulties. Specifically we show
that a formula based on canonical correlations calculated directly from the FIM instead of
the covariance matrix also holds

I(θA, θB) = −1

2

k∑
j=1

log(1− ρ2j), (15)

where ρi are canonical correlations calculated directly from FI(θ). These are defined as

ρi = max
wi

A,w
i
B

 wiA
T
FIABw

i
B√

wiA
T
FIAAwiAw

i
B
T
FIBBwiB

 (16)

subject to (i 6= j)

wiA
T
FIAAw

j
A = 0,

wiB
T
FIBBw

j
B = 0,

and
wiA

T
FIABw

j
B = 0,
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for i = min(m, l −m) and j < i.

Proof
It is sufficient to prove that

|Σ|
|ΣA||ΣB|

=
|FI|

|FIA||FIB|
. (17)

Recall that (
ΣAA ΣAB

ΣBA ΣBB

)−1
=

(
FIAA FIAB
FIBA FIBB

)
(18)

As Σ is positively defined then |ΣAA| > 0 and |ΣBB| > 0. In particular ΣAA and ΣBB are
nonsingular and we can take advantage of the formula for determinant of a block matrix

|Σ| = |ΣAA||ΣBB − ΣBAΣ−1AAΣAB| (19)

|Σ| = |ΣBB||ΣAA − ΣABΣ−1BBΣBA|.
First observation is that matrices ΣBB−ΣBAΣ−1AAΣAB and ΣAA−ΣABΣ−1BBΣBA have nonzero
determinants so they are invertible. This allows us to use formula for block-wise inversion(

ΣAA ΣAB

ΣBA ΣBB

)−1
=

(
(ΣAA − ΣABΣ−1BBΣBA)−1 . . .

. . . (ΣBB − ΣBAΣ−1AAΣAB)−1

)
(20)

Combining this with equation (18) we obtain

FIAA = (ΣAA − ΣABΣ−1BBΣBA)−1 (21)

FIBB = (ΣBB − ΣBAΣ−1AAΣAB)−1

Next, we use formula (19) to observe that

|Σ| = |ΣAA|
|FIBB|

=
|ΣBB|
|FIAA|

(22)

After short transformations and replacing one |Σ| with |FI|−1 we finally get

|Σ|
|ΣAA||ΣBB|

=
|FI|

|FIAA||FIBB|
. (23)
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3 Details of the clustering algorithm

The developed clustering algorithm is summarised as follows

calculate FIM ;
clusters← {{θ1}, {θ2} . . . {θk}} such that FIMii(θ) > ζ
for all A ∈ clusters do

height(A)← 0;
end for
while |clusters| > 1 do

for all A,B ∈ clusters, A 6= B do
calculate I(A,B) using formula (15);

end for
(A,B)← pair of clusters maximizing I(A,B);
(ρi)

m
i=1 ← canonical correlation between A and B;

create new node C representing the union of A and B;
height(C)← max(height(A), height(B)) + 1

m

∑m
i=1(1− ρ2i );

while maxθ∗∈C ρ(θ∗, C \ θ∗) > δ do
θ∗ ← parameter maximizing ρ(θ∗, C \ θ∗);
C ← C \ {θ∗};
mark θ∗ in red;

end while
clusters← clusters− A−B + C;

end while

Non-identifiable parameters are marked in red.

4 Interpreting (δ, ζ)-identifiability

As discussed in the subsection 2.3 of the MP the parameter θi is said to be (δ, ζ)-identifiable
if ρ(θi, θ−i) < δ and ||Si|| > ζ. We purposely require the parameter to satisfy two inde-
pendent conditions. The ζ-condition requires the parameter to have individual sensitivity
above a threshold. The δ-condition requires the parameter not to be correlated with re-
maining parameters above the threshold. Such a definition is constructed to ensure that
repeating the same experiment several times cannot make non-identifiable parameters iden-
tifiable and to determine which very parameters are not identifiable. In addition our focus
on having non-correlated parameters results from advantages of manipulating models with a
non-correlated parameters. These advantages are widely discussed in the literature [1, 8–11] .
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In our approach, incorporating additional experiments that yield highly correlated pa-
rameters may decreasing the number of identifiable parameters. For illustration consider a
model with two parameters θ = (θ1, θ2). Assume that the parameters can be informed by
two experiments yielding the following FIMs

FI(1) =

(
1 c
c 1

)
FI(2) =

(
1 d
d 1

)
(24)

Given independence of the two experiments the joint experiment results with the FIM

FI(1, 2) =

(
2 c+ d

c+ d 2

)
. (25)

Comparing correlation in the three scenarios, denoted here by ρ(1), ρ(2), ρ(1,2), we have that
correlation is averaged over experiments

ρ(1) = c, ρ(2) = d, ρ(1,2) =
1

2
(c+ d). (26)

Therefore adding ”bad” i.e. highly correlated data (experiment) may cause parameters fail
to satisfy δ-condition. It may seem an undesirable property. From practical point of view in
many cases it is however desirable. When performing inference in multi-parameter models
the main difficulty arrises from the likelihood surface having the shape of a long thin ellipsoid
[8]. This makes the search in parameter space computationally demanding. Our approach,
tailored to deal with multi-parameter models, is aimed to recognise this difficulty.

4.1 Relationship of (δ, ζ)-identifiability to ”alphabetical” experi-
mental design criteria

The criterium of (δ, ζ)-identifiability is different from the conventional Fisher information
based approaches known as alphabetic optimality (A-optimality, D-optimality, E-optimality
etc.), which maximise overall information about model parameters [12]. These criteria do
not serve to determine identifiability of individual parameter. We are focused on maximising
the number of individual parameters. In addition, as opposed to our method, conventional
approaches of alphabetic optimality predict increase of information as the same experiment
is repeated.

4.2 Low pairwise correlations do not ensure identifiability

Measuring parameters similarity using MI-CCA has a qualitative advantage over pairwise
correlations. Parameters that have low pairwise correlations may be non-identifiable and
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have CC equal to 1. This can be easily exemplified by the following FIM with respect to
parameters θ1, θ2, θ3

FI =

 1 0
√
2
2

0 1
√
2
2√

2
2

√
2
2

1

 . (27)

Straightforward calculation shows that we have the following pairwise correlations

ρ(θ1, θ2) = 0, ρ(θ1, θ3) = ρ(θ2, θ3) =
√

2/2.

However, CCA detects that θ3 is a linear combination of θ1 and θ2 as

ρ((θ1, θ2); θ3) = 0.

4.3 Relationship of (δ, ζ)-identifiability to profile likelihoods based
identifiability analysis

The concept of (δ, ζ)-identifiability is related to a concept of identifiability defined based
on profile likelihoods [13, 14]. Our framework is complementary and should be applied in
different scenarios. To demonstrate the link between the two approaches we introduce a
standard statistical notation. Assume as before, data X have a distribution with a den-
sity P (X|θ). Identical independent copies of X are denoted by Xk. We also introduce:
log-density l(X|θ) = log(P (X|θ)); expected log-density L(θ) = Eθ∗ (l(X|θ)), where Eθ∗ ()
denotes expected value with respect to P (X|θ∗); log-likelihood Ln(θ) =

∑N
k=1 l(Xi|θ).

Log-profile likelihood, PLn(·), of a parameter θi estimated along with parameters θ−i =
θ\{θi} is conventionally defined as [13, 15, 16]

PLn(θi) = max
θ−i

(Ln(θ)) . (28)

We consider the second order Taylor expansion of L(θ) around a true value θ∗

L(θ) = L(θ∗)− 1

2
(θ − θ∗)T FI(θ∗) (θ − θ∗) . (29)

The first order term is missing as L(θ) has the maximum for θ = θ∗ and therefore ∇θL(θ∗) =
0. The second term is by definition described by Fisher information. The function defined
below we call asymptotic profile likelihood (APL)

APL(θi) = max
θ−i

(L(θ)) . (30)
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It is well known that assuming general regularity conditions, we have convergence Ln(θ)→
L(θ) for each θ and therefore also convergence PLn(θ)→ APL(θ) as n→∞.
Consider the following transformation

APL(θi) = max
θ−i

(L(θ)) = L(θ∗)− 1

2
min
θ−i

(
1

2
(θ − θ∗)T FI(θ∗) (θ − θ∗)

)
Direct calculation (see proof below) shows that

min
θ−i

(
(θ − θ∗)T FI(θ∗) (θ − θ∗)

)
= FIii(θ

∗)
(
1− ρ2

)
(θi − θ∗i )2,

where ρ is the CC between θi and θ−i.

Therefore we have the formula that allows us to understand the link between (δ, ζ)-identifiability
and PL based identifiability

APL(θi) = L(θ∗)− 1

2
FIii(θ

∗)
(
1− ρ2

)
(θi − θ∗i )2.

Consider curvature κ of APL measured as the signless, second order derivative with respect
to θi

κ =

∣∣∣∣∂2APL(θi)

∂θ2i

∣∣∣∣ = FIii(θ
∗)
(
1− ρ2

)
.

The assumption of (δ, ζ)-identifiability imposes conditions on the curvature of APL. The
contribution resulting from FIii must be greater than ζ and the contribution coming from
correlation must be greater than (1 − δ2). We purposefully neglect the actual value of FIii
and verify only if it is above a threshold, as it can be artificially inflated by scaling of the
parameter or repeating the same experiment several times. The correlation ρ is affected by
neither of these factors.

The identifiability based on profile likelihoods [13] is determined by confidence intervals
{θi : |PL(θi) − PL(θ̂i)| < ∆}, where θ̂ is the argument maximising Ln(θ), and ∆ is a con-
stant selected based on χ2 statistics. If confidence interval extends infinitely parameter is
non-identifiable.

The two methods are applicable in different practical situations. If data X is available and
Ln(θ) can be calculated profile likelihood is the superior method. Our method, however, is
tailored to deal with a situation where only L(θ) is available, whereas Ln(θ) is not. It is
the case in a number of scenarios. For instance, if data X is not (yet) available or Ln(θ)
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cannot be evaluated analysing APL is the best one can do. As we demonstrate clustering
provides informative tool to explain the curvature of APLs, which cannot be delivered by
available methods. In the case of our meta-analysis of the NF-κB experiments calculating
Ln(θ) would hardly be possible due to reasons related to availability / comparability of data
as well as computational efficiency.

Proposition

The minimum minθ−i

(
(θ − θ∗)T FI(θ∗) (θ − θ∗)

)
can be expressed via CC using the follow-

ing formula

min
θ−i

(
(θ − θ∗)T FI(θ∗) (θ − θ∗)

)
= FIii(θ

∗)
(
1− ρ2

)
(θi − θ∗i )2.

Proof

Define G(θ−i|θi) = dθTFI(θ∗)dθ, where dθ = θ−θ∗. Differentiation with respect to θ−i given
θi shows that the minimum is achieved for

dθ−i = −FI−i,−i(θ∗)−1F−i,i(θ∗)dθi,

where lower indices denote corresponding elements of the FIM. We have therefore

min
θ−i

G(θ−i|θi) = dθ2iFIii(θ
∗)

(
1− FI−i,i(θ

∗)FI−i,−i(θ
∗)−1FI(θ∗)i,−i

FIi,i(θ∗)

)
Calculating CC, ρ, between θi and θ−i we obtain that

ρ =
FI−i,i(θ

∗)FI−i,−i(θ
∗)−1FI(θ∗)i,−i√

FIi,i(θ∗)FI−i,i(θ∗)FI−i,−i(θ∗)−1FI(θ∗)i,−i
.

Hence,

min
θ−i

G(θ−i|θi) = dθ2iFIii(θ
∗)(1− ρ2).
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5 Gene expression model

Simple model of gene expression

Steady state Out-of-steady-state
∅ ∅
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Figure 1: Analysis of the simple model of gene expression. (A) Model reactions, correspond-
ing ODEs and the steady state. (B) Illustrative analysis of the steady state dependence
on parameters. (C) Analysis of the system out-of-steady-state, the initial condition was
increased 30-fold compared to the steady state. See text for a discussion. The dendrograms
were generated using kr = 100, kp = 2, γr = 1.2, γp = 0.8.
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6 Analysis of the NF-κB system

The NF-κB dynamical model together with used parameter values are taken directly from
[17] and reader is referred to the supplementary information of that paper for more details.
Below we reproduce equations of the model and its parameter values (Table 1).

6.1 Model equations

active IKKK kinase
y1
dt

= ka y16 (KN − y1) ka20/(ka20 + y9)− ki y1 (31)

neutral IKK (IKKn)
y2
dt

= −y21 k1 y2 + k5 (KNN − y2 − y3 − y4)

free active IKK (IKKa)
y3
dt

= y21 k1 y2 − k3 y3 (k2 + y9)/k2

inactive IKK (IKKi)
y4
dt

= k3 y3 (k2 + y9)/k2− k4 y4

Phospo-IκBα cytoplasmic
y5
dt

= a2 y3 y11 − tp y5

cytoplasmic (phospho-IκBα—NFκB)
y6
dt

= a3 y3 y14 − tp1 y6

free cytoplasmic NFκB
y7
dt

= c6a y14 − a1 y7 y11 + tp1 y6 − i1 y7

free nuclear NFκB
y8
dt

= i1 y7 − a1 kv y12 y8

cytoplasmic A20
y9
dt

= c4 y10 − c5 y9

A20 transcript
y10
dt

= c1 y17 − c3 y10

free cytoplasmic IκBα
y11
dt

= −a2 y3 y11 − a1 y11 y7 + c4a y13 − c5a y11 − i1a y11 + e1a y12

free nuclear IκBα
y12
dt

= −a1 kv y12 y8 + i1a y11 − e1a y12

IκBα transcript
y13
dt

= c1a y18 − c3a y13

cytoplasmic (IκBa—NFκB) complex
y14
dt

= a1 y11 y7 − c6a y14 − a3 y3 y14 + e2a y15

nuclear (IκBa—NFκB) complex
y15
dt

= a1 kv y12 y8 − e2a y15

active receptors
y16
dt

= kb y19 (M − y16)− kf y16

A20 gene state
y17
dt

= q1 y8 (AN − y17)− q2 y12 y17

IκBα gene state
y18
dt

= q1a y8 (ANa− y18)− q2a y12 y18

extracellular TNF-α
y19
dt

= − Tdeg y19
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6.2 Variable normalisation

In the entire analysis of the NF-κB system we normalised model variables by squared root
of their maxima. We also assumed that the normalised variables were measured with unit
variance normal measurement error. Precisely

X = (Yi1/
√

max(Yi1) + εi1 , ..., Yiq/
√

max(Yiq) + εiq),

where εij ∼MVN(0, I), where I is an identity matrix. Indices ij select for variables that are
of interest in the context of the presented examples. These two assumptions are equivalent
to assume that each Yij is measured with the variance equal to the max(Yij).

6.3 Available experimental data - identifiability analysis

In the Table 2 we summarise experiments presented in the 9 papers [17–25] used to study
identifiability of the NF-κB model. We simplistically assumed that all experiments were
comparable and measurements across experiments were taken in the same units equivalent
to those used in the model (31). We used algorithm (3) to find out the number of identifiable
parameters using the (δ, ζ)-identifiability criterium. We set δ = 0.95 and ζ = 1. Starting
from the first listed experiment we iteratively added subsequent experiments that maximised
the number of identifiable parameters.
We repeated the procedure using experiments published in each of the papers and prior
to its publication. Obtained cumulative number of identifiable parameters is presented in
Figure 2. The dendrogram with 21 identifiable parameters for the total of available data is
presented in Figure 4A in MP.

6.4 Dependance of the results on δ and ζ values

In order to verify how the identifiability predictions depend on choice of values of δ and ζ
we have plotted the number of identifiable parameters as a function of δ and ζ in Figure 3.
All parameters are well above considered ζ thresholds therefore the number of identifiable
parameters does not change as ζ is varied. The number of identifiable parameters increases as
higher correlation can be accepted and reaches the total number of model parameters (39) at
δ = 1. The number of identifiable parameters is sensitive to δ. However the main conclusions
of our analysis that the rich set of available experiments yields highly correlated parameters
holds for all values of δ smaller the one. The correlations are moderately decreased by the
proposed experiments.
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Figure 2: The number of (δ, ζ)-identifiable parameters in the NF-κB model using experiments
published in the indicated paper and these available prior to its publication. Parameters
δ = 0.95 and ζ = 1 were used.

litrature experiments
litrature and proposed experiments

litrature experiments
litrature and proposed experiments

Figure 3: Number of parameters that satisfy the (δ, ζ)-condition as a function of δ (left) and
as a function ζ (right), for literature experiments (black) and literature experiments together
with proposed experiments (red).
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6.5 Randomly generated TNF-α stimulation protocols

In order to find TNF-α stimulation protocols that could potentially increase the number
of identifiable parameters we randomly generated 1000 TNF-α stimulation patterns. We
considered protocols consisting of 16 time intervals, each 10 minutes long. The TNF-α
concentration in the first interval was drawn with equal probability from the allowed con-
centrations 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ng/ml. For every remaining interval we drawn 0 ng/ml
with probability 0.6 and each of the concentrations 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 with 0.04 proba-
bility.
We found that adding new protocols cannot increase the number of identifiable parameters.
In Figure 4 we show the distribution of the number of identifiable parameters for the litera-
ture experiments considered jointly with one randomly generated experiment. The number
of identifiable parameter does not increase. It is the result of some parameters being highly
correlated with the remaining model parameters in the randomly generated experiments.
Histograms show CCs between each of the selected 19 highly correlated parameters and the
remaining parameters in the sampled 1000 random experiments.
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Litrature data and a single random experiment
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Figure 4: Histogram of the number of (δ, ζ)-identifiable parameters for the NF-κB model
using literature data and a randomly generated TNF-α stimulation protocols. Thresholds
δ = 0.95 and ζ = 1 were used.
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Figure 5: Histograms of correlations between the indicated parameter and remaining model
parameters of the NF-κB model in the 1000 randomly generated TNF-α stimulation proto-
cols.
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Redundancy inferred from the nuclear NF-κΒ dynamics
Normalised FI 
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of (A) and of Figure 4 in MP.
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Parameter Description Parameter Description

Cell parametersCell parameters q2=10^-6 s-1 inducible detaching from A20 
site

KN=10^5         total number of IKKK kinase 
molecules

q2a=10^-6 s-1 IkBa inducible detaching from 
IkBa site

KNN=2*10^5      total number of IKK kinase 
molecules 

Tdeg=2*10^-4 
s-1

TNF loss   

kv=5        cytoplasm to nuclear volume 
ratio 

A20 and IκΒα synthesisA20 and IκΒα synthesis

M=2000 number of TNF receptors a1=5*10^-7  s-1    IkBA NFkB association

AN=2 number of A20 alleles a2=10^-7   s-1     IkBa phosphoryation due to 
action of IKKa

ANa=2 number of IKBa alleles a3=5*10^-7  s-1    (IkBa|NFkb) phosphorylation 
due to action of IKKa

TNFα receptor kineticsTNFα receptor kinetics c1=0.1 s-1        inducible A20 mRNA 
synthesis 

kb=1.2*10^-5     
s-1 (ng/ml)-1

receptor activation rate           c1a=0.1  s-1  inducible IkBa mRNA 
synthesis 

kf=1.2*10^-3 s-1    receptor inactivation rate c3=0.00075  s-1    A20  mRNA degradation rate

TNFα receptor activation and signal transduction 
pathway
TNFα receptor activation and signal transduction 
pathway

c3a=0.00075  
s-1    

IkBa mRNA degradation rate

ka=10^-5 s-1                           IKKK kinase activation rate c4=0.5    s-1      A20 translation rate

ki=0.01 s-1        IKKK kinase inactivation rate c4a=0.5      s-1    IkBa translation rate

k1=6*10^-10 s-1 IKKn activation caused by 
active IKKK

c5=0.0005  s-1     A20 degradation ratek1=6*10^-10 s-1 IKKn activation caused by 
active IKKK

 IκΒα interactions IκΒα interactions

k1=6*10^-10 s-1 IKKn activation caused by 
active IKKK

c5a=0.0001 s-1    IkBa degradation rate

k1=6*10^-10 s-1 IKKn activation caused by 
active IKKK

c6a=0.00002   
s-1  

spontaneous (IkBa|NFkB) 
degradation of IkBa  
complexed to NF-kB

k2=10000   s-1                                             IKKa inactivation caused by 
A20 

tp=0.01    s-1     degradation of free phospho-
IkBa

k3=0.002   s-1                                                              IKKa inactivation tp1=0.01  s-1       degradation of phospho-IkBa 
complexed to NFkB

k4=0.001   s-1                                                IKKi ->IKKii transformation Nuclear shuttlingNuclear shuttling



Parameter Description Parameter Description

k5=0.001    s-1 IKKi->IKKn transformation e1a=0.005  s-1     %default 0.005 - IkBa nuclear 
export 

ka20=10^5    s-1                                                       A20 TNF receptor block e2a=0.05   s-1     (IkBa|NFkB) nuclear export

q1=4*10^-7  s-1 NF-kB ataching at A20  site i1=0.01    s-1     NFkB nuclear import 

q1a=4*10^-7  s-1 NF-kB ataching at IkBa site i1a=0.002   s-1  IkBa nuclear import

         
Table 1: Parameters used to analyse the NF- κB system. The following initial conditions
were used: y14(0) = 10 5 (NF- κB cytoplasmic complex ); y2(0) = 2 · 105 (initial IKKn, total
IKK is kept constant ) ; y11(0) = 0 .14 · y0(14) (free cytoplasmic I κBα protein); y12(0) =
0.06 · y0(14) (free nuclear I κBα protein); y13(0) = 10 (I κBα mRNA); y10(0) = 10 (A20
mRNA); y9(0) = 10000 (A20 protein); y8(0) = 1 (free nuclear NF - κB). The parameter
values and initial conditions have been taken directly from [16].
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Protocol Strain Measured 
variables

Model 
variables

Times (min) Figures Source

constant TNF 
20 ng/ml

WT IKKA y(3) 0,1,2,5,10,15,20,30,60 1A Delhase 
1999

constant TNF 
10 ng/ml

TW and 
A20 -/-

NF-kB nuclear y(8) 0,10,20,30,60,90,120,
180

1A Lee 2000constant TNF 
10 ng/ml

TW and 
A20 -/-

IkBa mRNA y(13) 0,30,60,90,120,150 1C Lee 2000

constant TNF 
10 ng/ml

TW and 
A20 -/-

IkBa protein y(5)+y(6)+y(11)
+y(12)+y(14)

+y(15)

0,15,30,60,90 1B Lee 2000

constant TNF 
10 ng/ml

TW and 
A20 -/-

IkBa protein - P y(5)+y(6) 0,15,30,60,90 1D Lee 2000

constant TNF 
10 ng/ml

TW and 
A20 -/-

IKK A y(3) 0,10,30,60,90,120 1E Lee 2000

constant TNF 
10 ng/ml

WT NF-kB nuclear

IKBa protein

y(8)

y(5)+y(6)+y(11)
+y(12)+y(14)

+y(15)

0,2,5,10,15,30,45,60,7
5,90,105,120,150,180,
210,240,270,300,330,3

60

2E Hoffman 
2002

single TNF 
10ng/ml 

pulses of 5, 
15, 30,  60 

min

WT NF-kB nuclear y(8) 0,2,5,10,15,30,45,60,7
5,90,105,120,150,180

2E Hoffman 
2002

constant TNF 
10 ng/ml

NF-kB nuclear y(8+y(15) every 3 minutes till 10h 2C Nelson 
2004

constant TNF 
10 ng/ml

IkBa protein

IkBa protein
 

y(5)+y(6)

y(5)+y(6)+y(11)
+y(12)+y(14)+y

(15)

0,5,10,15,20,30,60,90,
120,150,180,210,240,2

70

4D Nelson 
2004

single TNF 
1ng/ml pulses 

of 45 min

WT and 
A20 -/-

NF-kB nuclear

IKKA

y(8)

y(3)

0,5,10,15,30,45,60,90,
120,180,240

3A,3C Werner 
2005

double TNF 
20ng/ml 

pulses of 5 
min 

separated by 
30,60,90,120,

150,180 
minutes 
intervals

WT IKKa y(3) 10 minutes after pulse 
(for each protocol 

different time)

3G LIpniacki 
2007

single TNF 
1ng/ml pulses 

of 1,2,5,15 
min

WT NF-kB nuclear

IKKA

y(8)

y(3)

0,5,10,30,60 1D Werner 
2008



Protocol Strain Measured 
variables

Model 
variables

Times (min) Figures Source

single TNF 
1ng/ml pulses 

of 1 min

WT IkBa mRNA y(13) 15,30,60,120 1E Werner 
2008

constant TNF 
1 ng/ml

WT
and A20 

-/-

A20 mRNA
IkBa mRNA

y(10)
y(13)

15, 
30,45,60,90,120,180,2
40,360,480,600,720

3A Werner 
2008

constant TNF 
1 ng/ml

WT
and A20 

-/-

NF-kB nuclear y(8) 0,15,30,45,60,90,120 3B, 3D Werner 
2008

single TNF 
1ng/ ml 

pulses of 5, 
15, 45 min

WT
and A20 

-/-

NF-kB nuclear y(8) 30,60,120,180 4B Werner 
2008

single TNF 
1ng/ ml 

pulses of 5, 
15, 45 min

WT
and A20 

-/-
IKKa y(3) 30,60,120,180 S4B Werner 

2008

single TNF 10 
ng/ml pulses 
of 5, 15, 30, 

60  min

WT NF-kB nuclear y(8)+y(15) every 3 min for 4h S7 Ashall 
2009

constant TNF 
1 ng/ml

WT NF-kB nuclear y(8)+y(15) every 3 min for 6 h 1A,1C, 
3C

Ashall 
2009

three TNF 10 
ng/ml pulses 

of 5 min 
separated by 
60, 100, 200 

minutes 
intervals

WT NF-kB nuclear y(8)+y(15) every 3 min for 10 h 2A Ashall 
2009

double TNF 
10ng/ml 

pulses of 5 
min 

separated by 
60

WT IkBa protein

IkBa protein-P

y(5)+y(6)+y(11)
+y(12)+y(14)

+y(15)

y(5)+y(6)

0,5,20,60,65,80,120,16
0

S5A Ashall 
2009

double TNF 
10ng/ml 

pulses of 5 
min 

separated by 
100

WT IkBa protein

IkBa protein-P

y(5)+y(6)+y(11)
+y(12)+y(14)

+y(15)

y(5)+y(6)

0,5,20,60,100,105, 
120, 160

S5B Ashall 
2009

double TNF 
10ng/ml 

pulses of 5 
min 

separated by 
200

WT IkBa protein

IkBa protein- P

y(5)+y(6)+y(11)
+y(12)+y(14)

+y(15)

y(5)+y(6)

0,5,20,60,200,205,220,
260

S6 Ashall 
2009

constant TNF 
10 ng/ml

WT IkBa protein y(5)+y(6)+y(11)
+y(12)+y(14)

+y(15)

0,15,30,60,120,240,36
0,480

S11 Ashall 
2009



Protocol Strain Measured 
variables

Model 
variables

Times (min) Figures Source

constant TNF 
10 ng/ml

WT IkBa mRNA y(13) 0,15,30,60,120,240,48
0

S12 Ashall 
2009

constant TNF 
10 ng/ml

WT

IkBa gene state y(18) 20,40,60,80,120,150,1
80,210

S12 Ashall 
2009

single TNF 
10ng/ml 

pulses of 5 
min

WT IkBa gene state y(18) 20,40,60,80,120,150,1
80,210

S1A Ashall 
2009

double TNF 
10ng/ml 

pulses of 5 
min 

separated by 
100 minutes

WT IkBa gene state

A20 mRNA

IkBa mRNA

y(18)

y(10)

y(13)

0,20,40,60,100,120,14
0,160, 200

Fig.S23A
, S23B

Ashall 
2009

multiple TNF 
10ng/ml 

pulses of 5 
min 

separated by 
100 minutes 

for 6h

WT A20 mRNA

IkBa mRNA

y(10)

y(13)

0,15,115,215,315,415, 
515, 615

S23B Ashall 
2009

multiple TNF 
10ng/ml 

pulses of 5 
min 

separated by 
200 minutes 

for 6h

WT A20 mRNA

IkBa mRNA

y(10)

y(13)

0,15,115,215,315,415, 
515, 615

S23B Ashall 
2009

constant TNF 
1ng/

WT NF-kB nuclear y(8)+y(15) every 6 minutes for 6h 1C,
1D

Tay 2010constant TNF 
1ng/

WT

IkBa mRNA

A20 mRNA

y(13)

y(10)

0,30,60,120, 240, 6h,
8h,10,12h

2A, 2B Tay 2010



Table 2: Summary of the experiments on the NF-κB system published in [17–25]. The
columns contain: Protocol - TNF-α stimulation temporal profile; Strain - cell type i.e either
wild type (WT) or A20 knockout (A20 -/-); Measured variables - description of experimen-
tally measured variables; Model variables - the corresponding symbol of measured variables;
Times - measurement times; Figures - the figure number where data are presented in the
paper given in the column Source.

6.6 Experiments to increase the number of identifiable parameters

Here we provide technical details regarding experiments that increase the number of iden-
tifiable parameters as well as describe reasoning that lead us to propose them. Among
non-identifiable parameters in Figure 4A in MP, we have selected 6 parameters ki, KN , ka,
c3, c4 and c3a to be identified. As these refer to different modules of the pathway we divide
them into two subsets: ki, KN , ka and c3,c4, c3a. Experiments to estimate parameters of
each subset are described separately below.

6.6.1 Experimental design for parameters ki, KN , ka

Among equations (31) parameters ki, KN and ka are only involved in the equation of
phosphorylated IKKK (y1)

ẏ1 = ka y16 (KN − y1) ka20/(ka20 + y9)− ki y1. (32)

In order to make inference for this equation independently of other equations variables y1,
y9, y16 must be measured. Therefore we assume these variables are measured in WT cells
for 60 minutes every 5 minutes. We also assume the parameter k20 is estimated along with
the other three parameters. Throughout first 5 minutes of 60 minutes long experiment cells
are stimulated with 10ng TNF-α. The dendrogram that corresponds to such experiment is
presented in Figure 7A. The parameters exhibit high correlation as can be expected from
the structure of the equation (32). In order to improve identifiability we notice that using
A20 knockout cells would eliminate k20 from the equations. Similarly, blocking dephospho-
rylation with a phosphatase inhibitor would eliminate ki. Therefore measuring the assumed
three variables after TNF-α stimulation in three types of cells: wild type, A20 knockout, and
A20 knockout with blocked phosphatases activity, would render all parameters identifiable.
This is indeed reflected in the corresponding dendrogram (Figure 7C).
Predicions are confirmed by profile likelihoods
In order to verify identifiability predictions, we generated data from the model. The gen-
erated data were used to plot profile likelihoods. There is an ideal correspondence between
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what is predicted by our method and identifiability based on profile likelihoods. This is
shown in Figure 7B,D.
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Figure 7: Dendrogram for experiments aiming to estimate parameters ki, KN , ka along
with k20. Dynamics of IKKK activity (y1) receptor activity (y16), and cytoplasmic A20 (y9)
was assumed to be measured in (A) WT cells; (C) jointly in WT cells, A20 knockouts, and
A20 knockouts with phosphatase activity inhibitor. Predictions of the dendrograms (A) and
(C) are verified by profile likelihoods in (B) and (D) respectively. (E) presents histogram
of the number identifiable of parameters in experiment (C) when values of the parameters
k20, ki, KN , ka were randomly perturbed by upto 50%. This is to demonstrate that the
prediction does not depend on actual value of the parameters.

Identifiability predictions do not depend on parameter values
To verify if our predictions depend on actual values of the parameters we have randomly
generated 1000 sets of parameter values. For each set we calculated the number of identifiable
parameters using our (δ,ζ)-criterium with ζ = 1 and δ = 0.95. In each of the 1000 sets
all parameters were identifiable. This is depicted in the histogram (7D). Parameters were
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sampled according to the formula

θ
(j)
i = θ

(0)
i · 1.5(2∗U−1),

where θ
(0)
i is the primary value of one of the four parameters, i is indexing the four pa-

rameters, j is indexing the 1000 generated sets and U is a random variable sampled from a
uniform distribution on [0,1].

6.6.2 Experimental design for parameters c3, c4, c3a

Estimation of the parameter c3a, which is the degradation rate of IκBα transcript, present
in the equation

IκBα transcript
y13
dt

= c1a y18 − c3a y13
is relatively straightforward [26, 27]. We assume that after 10 min long 10ng TNF-α stim-
ulation and 50 minutes of waiting for transcripts to be produced transcription is blocked
with a transcription inhibitor. The above equation is then fitted to data assuming c1a = 0.
In our numerical simulations we assumed transcripts were measured every 5 minutes for 2h
starting at 1h after initial TNF-α stimulation.

Parameters c3,c4 denote degradation of A20 transcript, translation and degradation of A20
protein, respectively. Equations depended on these parameters are

cytoplasmic A20
y9
dt

= c4 y10 − c5 y9, (33)

A20 transcript
y10
dt

= c1 y17 − c3 y10.

We assume parameter c5 is estimated along with c3 and c4. In order to obtain information
about translation rate and degradation rates we considered again cells being stimulated for
10 minutes with 10ng TNF-α. In order to avoid dissect the equation from the rest of the
system we assume transcription is blocked just after 10 min of TNF-α stimulation. Three
modified versions of this experiments were jointly required to obtain sufficiently decelerated
parameters. In version one only A20 transcript is measured, in version two only A20 protein
is quantified, in the third scenario both A20 mRNA and protein are measured. Such com-
bination of measurements allowed us to break parameter correlations. This is depicted in
Figure 8. Parameters of this experiment are plotted jointly with the experiment to estimate
ki, KN , ka. The dendrogram plotted for literature experiments together with the proposed
experiments is plotted in Figure 4B in MP.
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7 Analysis of the MAPK signalling model

In order to demonstrate that the described methodology is suitable for models that involve
hundreds of parameters, and to verify if correspondence between similarity and network
topology is not limited to the NF-κB system, we analyzed a computational model of dy-
namics of the MAP kinase cascade activated by surface and internalized EGF receptors [28].
The EGF receptor belongs to the tyrosine kinase family of receptors and is expressed in
virtually all organs of mammals. It plays a complex role during embryonic and postnatal
development and in the progression of tumor. Binding of EGF to the extracellular domain
of the EGF receptor initialize complex process. These lead to phosphorylation, transmis-
sion of conformational change, and proximal translocation to membrane-associated target
molecules. It induces two pathways: Shc-dependent and Shc-independent, leading to ac-
tivation of Ras-GTP and eventually MAP kinase cascade through the kinases Raf, MEK
and ERK. Activated ERK phosphorylates and regulates several cellular proteins and nuclear
transcription factors.
One of the widely accepted mathematical models of MAPK signalling was published in [28].
It involves approximately 100 ODEs and 200 parameters. Authors optimised parameters
so that the model generates behaviour observed experimentally. Detailed analysis of the
model is beyond the scope of this paper. The dendrogram plotted for this model (Figure 9),
reveals that correspondence between network topology is not limited to the NF-κB model,
but is likely to be more general feature of biochemical models. The latter statement however
requires further verification. Parameters in the dendrogram 9 are colour coded and corre-
spond to the arrows in the networks’ schematics in Figure 10. Clearly clustered parameters
describe functional modules proximate in the netwok’s structure.
Even though the model involves 200 parameters the dendrogram can be computed within
minutes on a standard desktop machine.
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