Supplementary Material

Title

Genetic diversity and evolutionary insights of respiratory syncytial virus A ON1 genotype: global and local transmission dynamics.

Authors:

Venkata R. Duvvuri^{1,2#,*}, Andrea Granados^{1,3#}, Paul Rosenfeld¹, Justin Bahl⁴, Alireza Eshaghi¹, Jonathan B. Gubbay^{1,3,5,6*}

These authors contributed equally to this work.

Affiliations

¹ Public Health Ontario, Toronto, Ontario, Canada

² University of Waterloo, Waterloo, Ontario, Canada (MPH student)

³ University of Toronto, Ontario, Canada

⁴ Center for Infectious Diseases, The University of Texas School of Public Health, Houston, Texas, United States of America.

⁵ Mount Sinai Hospital, Toronto, Ontario, Canada

⁶ The Hospital for Sick Children, Toronto, Ontario, Canada

*Corresponding authors

Dr. Jonathan Gubbay Medical Microbiologist Public Health Ontario Laboratory Ontario Agency for Health Protection and Promotion (OAHPP) 81 Resources Rd, Toronto, ON M9P 3T1 jonathan.gubbay@oahpp.ca

Co-corresponding author:

Dr. Venkata R Duvvuri, venkata.duvvuri@oahpp.ca

			G-gene Sequences (length 330bp)		th 330bp)	G-gene Sequences (length 696bp)				gth 696bp)		
Country	Strain Identifier	Accession Number	Number of sequences collected during season (October to September)		Number of sequences collected during season Total (October to September)		Number of sequences collected during season (October to September)			Total sequences		
			2010- 2011	2011- 2012	2012- 2013	2013- 2014		2010- 2011	2011- 2012	2012- 2013	2013- 2014	-
Canada	ON, C, E, H, I	JN257693, JN257694, KP321974- KP322010, KR871317-KR871349	10	50			60	10	1			11
China	BJ, GZ	KC461212, KC461213, KC559442, KC559440, KM586845, KM586834			5		5	_		5		5
Croatia	HR	KF057865, KF057866, KF057867			2		2					0
Cuba	CU2011	KC754738, KC754743, KC677857- KC677877, KC283043, KC283044		8	12		20		8	12		20
Germany	HD, WUE	KJ710364-KJ710420, JX912355- JX912364		10	29		39					0
India	NIV	KF246639, KF246640, KC731482, KF246641, KF246638	1	4			5	1	4			5
Italy	RM, AN	JX988439 to JX988452, KC858199- KC858257		14	52		66					0
Japan	AH, AS, Chiba, Kanagawa, Yamaguchi, Yokohama	AB761609, AB761610, AB761611 AB754590, AB698559, AB808757- AB808780		13	16		29			4		4
Kenya	KEN	KF587911-KF588014		28	49		77		28	49		77
Korea	GM	JX627336		1			1		1			1
Latvia	LV	KF030154		1			1					0
Malaysia	MY	JX256871		1			1					0
Panama Paraguay	PAN Py	KF300973-KF301018 KM508823, KM508824,KM508825,KM508826	13	9	4		22 4	13	9	4		22 4
Peru	PER	KJ627264, KJ627347		1			1		1			1
Philippines	ONP, BPH	AB846656, AB846657, AB846655, AB846651, AB846652, AB846653			6		6	_		6		6
South Africa	SA, RXH	KC476744, KC476745, JX885730- JX885737		10			10		2			2
Spain	MAD, VH	KF915227-KF915265, KM402618- KM402671			25	53	78			25	53	78
Thailand	CU2011	KC342406, KC342413, KC342419, KC342434, KC342441	3	2			5	3	2			5
USA	LA2, TX	KJ890469-KJ890479, KM042382- KM042392, KJ672424-KJ672480		3	48		51			40		40
	Total sequences used in the o	urrent study	27	155	248	53	483	27	56	145	53	281
	Total countries covered in the	e current analysis	3	15	11	1	20	3	8	8	1	15

Table S1. RSV-A ON1 G-gene sequences used in the study.

Country	Province/City/Hospital/Surveillance systems	Reference	
(specimen collection period)			
Canada (2010-2012)	Ontario	1	
China (2012-2013)	Beijing, Chongqing, Shanghai	2-4	
Croatia (2012-2013)	Exact location not available	Unpublished	
Cuba (2011-2013)	Exact location not available	Unpublished	
Cyprus (2012-2013)	Nicosia	5	
Germany (2011-2013)	Bavaria, Heidelberg	6-7	
India (2010-2012)	Pune	8	
Italy (2011-2013)	Rome, Ancona	9	
Japan (2011-2013)	Fukui, Chiba, Tochigi, Yamaguchi, Kanagawa	10-11	
Kenya (2011-2012)	Kilifi	12	
South Korea (2011-2012)	ARI-NET and KINRESS	13	
Latvia (2011-2012)	Riga	14	
Malaysia (2011-2012)	Kuala Lumpur	15	
Panama (2010-2012)	Exact location not available	Unpublished [#]	
Paraguay (2012-2013)	Exact location not available	Unpublished [#]	
Peru (2011-2012)	Lima	Unpublished [#]	
Philippines (2012-2013)	Palawan, Puerto Princesa	Unpublished [#]	
South Africa (2011-2012)	Cape Town, Gauteng Province, KwaZulu-Natal Province, Mpumalanga Province, and North-West Province, Pretoria	16-17	
Spain (2012-2014)	Catalonia	18	
Thailand (2010-2011)	Bangkok and Khon Kaen provinces	19	
USA (2011-2013)	Texas, Tennessee	20	

Table S2. Exact geographical area of collected specimens from each country.

[#]RSV-A ON1 G-gene sequences are directly submitted to NCBI Genbank. G-gene sequences from Cyprus are not available in NCBI Genbank.

Supplementary Material

References cited in Table S2.

- 1. Eshaghi, A. *et al.* Genetic variability of human respiratory syncytial virus A strains circulating in Ontario: A novel genotype with a 72 nucleotide G gene duplication. *PLOS One.* **7**, 1-10 (2012).
- 2. Cui, G. *et al.* Genetic variation in attachment glycoprotein genes of human respiratory syncytial virus subgroups A and B in children in recent five consecutive years. *PLOS One.* **8**, 1-12 (2013).
- Liu, J. *et al.* Genetic variation of human respiratory syncytial virus among children with fever and respiratory symptoms in Shanghai, China, from 2009 to 2012. *Infect Genet Evol.* 27, 131-6 (2014).
- 4. Ren, L. *et al.* The genetic variability of glycoproteins among respiratory syncytial virus subtype A in China between 2009 and 2013. *Infect Genet Evol.* **27**, 339-47 (2014).
- Panayiotou, C. *et al.* Epidemiology of respiratory syncytial virus in children in Cyprus during three consecutive winter seasons (2010-2013): Age distribution, seasonality and association between prevalent genotypes and disease severity. *Epidemiol Infect.* 142, 2406-11(2014).
- Prifert, C., Streng, A., Krempl, C., Liese, J. & Weissbrich, B. Novel respiratory syncytial virus A genotype, Germany, 2011-2012. *Emerg Infect Dis.* 19, 1029-30 (2013).
- Tabatabai, J., Prifert, C., Pfeil, J., Grulich-Henn, J. & Schnitzler, P. Novel Respiratory Syncytial Virus (RSV) Genotype ON1 Predominates in Germany during Winter Season 2012–13. *PLOS One.* 9, 1-9 (2014).
- 8. Choudhary, M., Anand, S., Wadhwa, B. & Chadha, M. Genetic variability of human respiratory syncytial virus in Pune, Western India. *Infect Genet Evol.* **20**, 369-77 (2013).
- 9. Pierangeli, A. *et al.* Rapid spread of the novel respiratory syncytial virus A ON1 genotype, central Italy, 2011 to 2013. *Euro Surveill.* **19**, 1-10 (2014).
- Hirano, E. *et al.* Molecular evolution of human respiratory syncytial virus attachment glycoprotein (G) gene of new genotype ON1 and ancestor NA1. *Infect Genet Evol.* 28, 183-91 (2014).
- 11. Tsukagoshi, H. *et al.* Genetic analysis of attachment glycoprotein (G) gene in new genotype ON1 of human respiratory syncytial virus detected in Japan. *Microbiol Immunol.* **57**, 655-9 (2013).
- 12. Agoti, C., Otieno, J., Gitahi, C., Cane, P. & Nokes, D. Rapid spread and diversification of respiratory syncytial virus genotype ON1, Kenya. *Emerg Infect Dis.* **20**, 950-9 (2014).
- 13. Kim, Y. *et al.* Rapid replacement of human respiratory syncytial virus A with the ON1 genotype having a 72 nucleotide duplication in G gene. *Infect Genet Evol.* **26**, 103-12 (2014).
- Balmaks, R., Ribakova, I., Gardovska, D. & Kazaks, A. Molecular epidemiology of human respiratory syncytial virus over three consecutive seasons in Latvia. *J Med Virol.* 86, 1971-82 (2014).

- 15. Khor, C., Sam, I., Hoopi, P. & Chan, Y. Displacement of predominant respiratory syncytial virus genotypes in Malaysia between 1989 and 2011. *Infect Genet Evol.* **14**, 357-60 (2013).
- Valley Omar, Z., Muloiwa, R., Hu, N., Eley, B. & Hsiao, N. Novel respiratory syncytial virus subtype ON1 among children, Cape Town, South Africa, 2012. *Emerg Infect Dis.* 19, 668-70 (2013).
- 17. Pretorius, M. *et al.* Replacement and positive evolution of subtype A and B respiratory syncytial virus G-protein genotypes from 1997-2012 in South Africa. *J Infect Dis.* **208**, S227-37 (2013).
- Gimferrer, L. *et al.* Molecular epidemiology and molecular characterization of respiratory syncytial viruses at a tertiary care university hospital in Catalonia (Spain) during the 2013-2014 season. *J Clin Virol.* 66, 27-32 (2015).
- Auksornkitti, V. *et al.* Molecular characterization of human respiratory syncytial virus, 2010-2011: Identification of genotype ON1 and a new subgroup B genotype in Thailand. *Arch Virol.* 159, 499-507 (2014).
- Avadhanula, V. *et al.* Infection with Novel Respiratory Syncytial Virus Genotype Ontario (ON1) in Adult Hematopoietic Cell Transplant Recipients, Texas, 2011–2013. *J Infect Dis.* 211, 582-9 (2015).

Country (number of sequences)	Coalescent Method	Mean Evolutionary Rate (substitutions/site/year)			R_{θ}		
		x10 ⁻³	95% BCI	95% BCI	Mean	95% BCI	95% BCI
Canada	Exponential Growth	3.12	1.0x10 ⁻³	5.6x10 ⁻³	1.03	1.007	1.07
$\begin{array}{c} (n=60) \\ Germany \\ (n=39) \end{array}$	Exponential Growth	5.5	1.8x10 ⁻³	8.9x10 ⁻³	1.04	1.008	1.08
Italy (n=66)	Exponential Growth	4.04	$1.4 \text{x} 10^{-4}$	8.9×10^{-3}	1.01	0.99	1.03
Japan (n=29)	Exponential Growth	6.6	5.7x10 ⁻⁴	1.5×10^{-2}	1.01	1.0	1.03
Kenya (n=77)	Exponential Growth	2.23	7.7x10 ⁻⁴	3.9x10 ⁻³	1.003	1.004	1.01
Spain (n=78)	Exponential Growth	1.56	4.3x10 ⁻⁴	2.9x10 ⁻³	1.005	0.99	1.01
Panama (n=22)	Exponential Growth	2.97	4.8×10^{-4}	5.6×10^{-3}	1.02	1.0	1.04
USA (n=51)	Exponential Growth	1.9	4.7x10 ⁻⁴	3.7x10 ⁻³	1.01	1.0009	1.02

Table S3. Estimated mean evolutionary rates, and basic reproductive number (R_{θ}) of RSV-A ON1 G-gene sequences[#] by country.

BCI: Bayesian credible intervals, R_0 : Basic reproduction number

Second hypervariable region of G-gene (330bp length).

Pathogen	Genetic data	Number of sequences	R_{θ} from sequences (95% BCI)	R_{θ} range from incidence data
Respiratory Syncytial Virus	G-gene (Set G330)	483	1.017 (1.012-1.022)#	1.2-2.1 ¹
	G-gene (Set ON)	60	$1.030 (1.007 - 1.07)^{\#}$	
Pandemic 2009 H1N1	Hemagglutinin	23	1.2^{2}	1.4 - 1.6 ²
Pandemic 2009 H1N1	whole genome	100##	$1.12(1.07 - 1.16)^3$	1.3 - 1.7 ²⁻⁴
Hepatitis C virus subtype 1a	E1, NS5	34, 59	2.93 ⁵	1.2^{6}
Hepatitis C virus subtype 1b	E1, NS5	76, 53	2.67^{5}	
Hepatitis C virus subtype 4	E1, NS5	22, 18	1.68 ⁵	
Hepatitis C virus subtype 6	E1, NS5	23, 40	1.21 ⁵	
2014 Ebola virus (EBOV)	whole genome	72	1.65 - 2.18 ⁷	1.51-2.53 ⁸
Middle East respiratory syndrome coronavirus (MERSCoV)	whole genome	10	1.21 (1.08 - 1.40) ⁹	0.42-0.80 ¹⁰
Epizootic Rabies virus	concatenated G, N and non-coding regions	-	1.02-1.16 ¹¹	1.66-2.33 ¹²
Methicillin-resistant Staphylococcus aureus (MRSA) - <i>SPA-type</i> t008	whole genome	30	1.24-1.34 ¹³	0.60-1.0 ¹⁴

Table S4. R ₀ values o	uantified for	infectious dise	eases using gen	etic data and	incidence data
Tuble b in hig valueb g	uummicu ivi	miccuous unse	uses using sen	ciic aata aiia	menuence unu

Specific to RSV-A ON1 genotype from the current study

First two months of pandemic

References cited in Table S4.

- Weber, A., Weber, M., & Milligan, P. Modeling epidemics caused by respiratory syncytial virus (RSV). *Math Biosci.* 172, 95-113 (2001).
- Fraser, C. *et al.* Pandemic potential of a strain of influenza A (H1N1): early findings. *Science* 324:1557–1561 (2009).
- 3. Hedge, J., Lycett, S., & Rambaut, A. Real-time characterization of the molecular epidemiology of an influenza pandemic. *Biol Lett.* **9**, 20130331(2013).
- 4. White, L. *et al.* Estimation of the reproductive number and the serial interval in early phase of the influenza A/H1N1 pandemic in the USA. *Influenza Other Respir Viruses*, **3**, 267–276 (2009).
- 5. Pybus, O.G. et al. The epidemic behavior of the hepatitis C virus. Science. 292, 2323-5 (2001).
- Massad, E., Coutinho, F.A., Chaib, E., & Burattini, M.N. Cost-effectiveness analysis of a hypothetical hepatitis C vaccine compared to antiviral therapy. *Epidemiol Infect.* 137, 241-9 (2009).
- Stadler, T., Kuhnert, D., Rasmussen, D.A., & du Plessis, L. Insights into the Early Epidemic Spread of Ebola in Sierra Leone Provided by Viral Sequence Data. *PLoS Curr Outbreaks*. October 6, (2014).
- Althaus, C.L. Estimating the Reproduction Number of Ebola Virus (EBOV) During the 2014 Outbreak in West Africa. *PLoS Curr Outbreaks*. September 2, (2014).
- 9. Cauchemez, S. *et al.* Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility. *Lancet Infect Dis*, **14**, 50-56 (2014).
- 10. Breban, R., Riou, J., & Fontanet, A. Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk. *Lancet*. **382**, 694-9 (2013).
- 11. Biek, R. *et al.* A high-resolution genetic signature of demographic and spatial expansion in epizootic rabies virus. *Proc Natl Acad Sci U S A.* **104**, 7993-8 (2007).
- Coleman, P.G., Dye, C. Immunization coverage required to prevent outbreaks of dog rabies. *Vaccine*. 14, 185-6 (1996).
- Prosperi, M. *et al.* Molecular epidemiology of community-associated methicillin-resistant Staphylococcus aureus in the genomic era: a cross-sectional study. *Sci Rep* 3, 1902 (2013).
- 14. Kajita, E., Okano, J. T., Bodine, E. N., Layne, S. P. & Blower, S. Modelling an outbreak of an emerging pathogen. *Nat Rev Microbiol.* **5**, 700–9 (2007).

Table S5. Parameter estimates, dN/dS, values of log-likelihood (*l*), positively selected sites, and likelihood ratio tests (LRT) in the C-terminal hypervariable region of G-gene of RSV-A ON1 genotype viruses circulating globally (2010-2014), and Ontario, Canada (2010-2012).

Model	Parameter estimates	Mean dN/dS	Log- likelihood (<i>l</i>)	Positively selected sites (PSS)	Model comparison (2Δ <i>l</i> , d.f, p)
Global (s	set G330)				
M1a	ω0=0.0, ω1 =1.00 p0= 0.26, (p1= 0.74)	0.73	-1371.540	not allowed	M1a vs. M2a : 9.26, d.f = 2 p = 0.009
M2a	ω ₀ = 0.0, ω1=1.00 ω2=2.93 p0=0.28, p1=0.42 (p2=0.29)	1.29	-1366.909	Twenty PSS listed in Table S4	
M7	p= 0.013 q= 0.005	0.66	-1372.025	not allowed	M7 vs. M8 : 10.06, d.f = 2, p = 0.006
M8	p0= 0.75, (<i>p1= 0.25</i>) p= 0.02, q=0.006 ω=3.24	1.30	-1366.991	Forty one listed in Table S4	•
Ontario	(set ON)				
M1a	ω0=0.0, ω1=1.00 p0=0.35 (p1=0.65)	0.65	-638.162	not allowed	M1a vs. M2a : 6.44, d.f = 2 p = 0.03
M2a	$\omega_0 = 0.33, \omega 1 = 1.0$ $\omega 2 = 6.42$ p 0 = 0.85, p 1 = 0 (p 2 = 0.15)	1.23	-634.939	Five PSS listed in Table S4	
M7	p=0.045, q=0.022	0.67	-638.171	not allowed	M7 vs. M8 : 6.45, d.f = 2, p = 0.02
M8	<i>p</i> ₀ =0.85, (<i>p</i> 1=0.15) p=16.2, q=32.05 ω=6.43	1.23	-634.942	Twelve PSS listed in Table S4	

Neutral models (M1a, and M7) were compared with their respective alternative (selection) models (M2a and M8), which allow $\omega > 1$. Model comparison can be calculated using $2\Delta l = 2 (l_1 - l_0)$), where $l_1 = LRT$ of alternative model; and $l_0 = LRT$ of null model. Proportion of PSS and their corresponding ω -values in M2a and M8 models are in bolded italics.ON67-1210A (accession number: JN257693) was used as reference strain in both analyses.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Type of dataset	CODEML model (AA [#])	PSS using Bayes Empirical Bayes (BEB) analysis					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			p>50% to p<70%	p>70% to p<90%	p>90%			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(mean $dN/dS \pm S.E.$)	(mean $dN/dS \pm S.E.$)	(mean $dN/dS \pm S.E$)			
	Ontario	M2a (5)	Y273 (3.9 ± 3.4)	T306 (5.8 ± 3.1)	V303 (6.6 ± 2.6)			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(set ON)		$Y280(3.8 \pm 3.4)$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$L310 (3.7 \pm 3.2)$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		M8 (12)	$V225 (3.5 \pm 3.1)$	T306 (5.6 ± 2.9)	$V303 (6.2 \pm 2.6)$			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$1241(3.4 \pm 3.1)$					
$ \begin{array}{c} \text{Ll} 14 (3, l \pm 3, 0) \\ Y280 (3, 8 \pm 3, 2) \\ \text{L289 } (3, 5 \pm 3, 1) \\ Y304 (3, 4 \pm 3, 1) \\ \text{I} 319 (3, 4 \pm 3, 1) \\ \text{Clobal} \\ \text{(set G330)} \\ \begin{array}{c} \text{M2a} (20) \\ 1226 (2, l \pm 1, 3) \\ 1243 (2, 3 \pm 1, 5) \\ 1245 (2, 3 \pm 1, 5) \\ 1245 (2, 3 \pm 1, 5) \\ 1245 (2, 3 \pm 1, 5) \\ 1246 (2, 0 \pm 1, 3) \\ 1247 (2, 6 \pm 1, 2) \\ 1248 (2, 3 \pm 1, 5) \\ 1248 (2, 3 \pm 1, 5) \\ 1248 (2, 3 \pm 1, 3) \\ 1248 (2, 2 \pm 1, 4) \\ 1226 (2, 4 \pm 1, 3) \\ 1273 (2, 2 \pm 1, 4) \\ 1289 (2, 0 \pm 1, 3) \\ 1310 (2, 2 \pm 1, 4) \\ 1289 (2, 0 \pm 1, 3) \\ 1310 (2, 2 \pm 1, 4) \\ 1289 (2, 0 \pm 1, 3) \\ 1310 (2, 2 \pm 1, 4) \\ 1289 (2, 0 \pm 1, 3) \\ 1310 (2, 2 \pm 1, 4) \\ 1226 (2, 0 \pm 1, 3) \\ 1310 (2, 2 \pm 1, 4) \\ 1226 (2, 0 \pm 1, 3) \\ 1310 (2, 2 \pm 1, 4) \\ 1226 (2, 0 \pm 1, 3) \\ 1310 (2, 2 \pm 1, 4) \\ 1226 (2, 0 \pm 1, 2) \\ 1310 (2, 2 \pm 1, 4) \\ 1226 (2, 0 \pm 1, 2) \\ 1310 (2, 2 \pm 1, 4) \\ 1226 (2, 0 \pm 1, 2) \\ 1226 (2, 0 \pm 1, 2) \\ 1226 (2, 0 \pm 1, 1) \\ 1238 (1, 7 \pm 1, 1) \\ 1248 (2, 0 \pm 1, 2) \\ 1235 (1, 7 \pm 1, 1) \\ 1248 (2, 0 \pm 1, 2) \\ 1235 (1, 7 \pm 1, 1) \\ 1248 (2, 0 \pm 1, 2) \\ 1235 (1, 7 \pm 1, 1) \\ 1248 (2, 0 \pm 1, 2) \\ 1235 (1, 9 \pm 1, 2) \\ 1236 (1, 9 \pm 1, 2) \\ 1236 (1, 9 \pm 1, 2) \\ 1239 (1, 9 \pm 1, 1) \\ 1238 (1, 9 \pm 1, 1) \\ 138 (1, 1, 1) \\ 138 (1, 1,$			$Y 2/3 (3.9 \pm 3.2)$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$L274 (5.7 \pm 5.0)$ $V280 (2.8 \pm 2.2)$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			$1200(3.0 \pm 3.2)$ $1289(3.5 \pm 3.1)$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$Y_{304}(34 + 31)$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$1304(3.4 \pm 3.1)$ 1.310(40+30)					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.312(3.4 + 3.1)					
			$T319 (3.4 \pm 3.1)$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Global	M2a (20)	L226 (2.1 ±1.3)	G232 (2.7 ±1.2)	V225 (3.3 ±1.4)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(set G330)		T231 (2.1 ±1.3)	L247 (3.1 ±1.5)	V303 (3.2 ± 1.4)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			T245 (2.3 ±1.5)	H266 (2.6±1.4)	N318 (3.2 ± 1.4)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			T246 (2.0 ±1.3)	L274 (2.6 ±1.2)				
$\begin{array}{c} N250 (2.2 \pm 1.2) \\ E262 (2.4 \pm 1.3) \\ Y273 (2.2 \pm 1.4) \\ L289 (2.0 \pm 1.3) \\ T306 (2.0 \pm 1.3) \\ L310 (2.2 \pm 1.1) \\ \\ \hline \\ M8 (41) P217 (1.8 \pm 1.1) \\ K223 (1.7 \pm 1.1) \\ K223 (2.7 \pm 0.9) \\ K233 (1.7 \pm 1.1) \\ K233 (1.7 \pm 1.1) \\ K262 (2.5 \pm 1.1) \\ K274 (2.6 \pm 0.9) \\ K233 (1.7 \pm 1.1) \\ K262 (2.5 \pm 1.1) \\ K274 (2.6 \pm 0.9) \\ K233 (1.7 \pm 1.1) \\ K262 (2.5 \pm 1.1) \\ K274 (2.6 \pm 0.9) \\ K233 (1.7 \pm 1.1) \\ K260 (2.5 \pm 1.1) \\ K234 (2.0 \pm 1.2) \\ K235 (1.7 \pm 1.1) \\ K260 (2.5 \pm 1.1) \\ K275 (1.9 \pm 1.2) \\ K275 (1.9 \pm 1.2) \\ K275 (1.9 \pm 1.2) \\ K275 (1.8 \pm 1.0) \\ S283 (1.9 \pm 1.2) \\ K292 (2.7 \pm 1.1) \\ K292 (2.7 \pm 1.1) \\ K292 (1.7 \pm 1.1) \\ K299 (1.6 \pm 1.0) \\ K293 (1.9 \pm 1.2) \\ K293 (1.8 \pm 1.1) \\ K307 (1.9 \pm 1.1) \\ K307 (1.9 \pm 1.1) \\ K307 (1.9 \pm 1.1) \\ K303 (1.7 \pm 1.1$			T248 (2.5 ±1.3)	H290 (2.6±1.4)				
$\begin{array}{c} E262\ (2.4\pm1.3) \\ Y273\ (2.2\pm1.4) \\ L289\ (2.0\pm1.3) \\ T306\ (2.0\pm1.3) \\ L310\ (2.2\pm1.1) \end{array}$ $\begin{array}{c} M8\ (41) \qquad P217\ (1.8\pm1.1) \qquad T245\ (2.3\pm1.2) \qquad V225\ (2.8\pm0.9) \\ K223\ (1.7\pm1.1) \qquad T249\ (2.4\pm1.1) \qquad G232\ (2.7\pm0.9) \\ L226\ (2.0\pm1.2) \qquad N251\ (2.3\pm1.1) \qquad L247\ (2.7\pm1.0) \\ T231\ (2.1\pm1.2) \qquad E262\ (2.5\pm1.1) \qquad L274\ (2.6\pm0.9) \\ K233\ (1.7\pm1.1) \qquad H226\ (2.5\pm1.1) \qquad L274\ (2.6\pm0.9) \\ K233\ (1.7\pm1.1) \qquad H226\ (2.5\pm1.1) \qquad N318\ (2.8\pm0.9) \\ T235\ (1.7\pm1.1) \qquad G272\ (2.5\pm1.1) \qquad N318\ (2.8\pm0.9) \\ T246\ (2.1\pm1.2) \qquad Y273\ (2.2\pm1.1) \\ L248\ (2.0\pm1.2) \qquad H290\ (2.5\pm1.1) \\ S250\ (1.9\pm1.2) \qquad T319\ (2.6\pm1.0) \\ S260\ (1.9\pm1.2) \\ S275\ (1.8\pm1.0) \\ S283\ (1.9\pm1.2) \\ L289\ (2.0\pm1.1) \\ T292\ (1.7\pm1.1) \\ T292\ (1.7\pm1.1) \\ T293\ (1.8\pm1.1) \\ S294\ (1.9\pm1.2) \\ G296\ (1.9\pm1.1) \\ L288\ (1.9\pm1.2) \\ G296\ (1.9\pm1.1) \\ L288\ (1.6\pm1.0) \\ T306\ (2.0\pm1.1) \\ S307\ (1.9\pm1.1) \\ S317\ (1.8\pm1.1) \\ S317\ (1.8\pm1.1) \\ S313\ (1.8\pm1.1) \\ S313\ (1.8\pm1.1) \\ \end{array}$			N250 (2.2 ±1.2)	T319 (2.8 ±1.4)				
$\begin{array}{c} 1289\ (2.0\ \pm 1.3)\\ 1289\ (2.0\ \pm 1.3)\\ 1306\ (2.0\ \pm 1.3)\\ 1310\ (2.2\ \pm 1.1)\\ \hline \\ \mbox{M8}\ (41) & \mbox{P17}\ (1.8\ \pm 1.1) & \mbox{T245}\ (2.3\ \pm 1.2) & \mbox{V225}\ (2.8\ \pm 0.9)\\ 1226\ (2.0\ \pm 1.2) & \mbox{R21}\ (2.3\ \pm 1.1) & \mbox{L247}\ (2.7\ \pm 1.0)\\ 1226\ (2.0\ \pm 1.2) & \mbox{R22}\ (2.5\ \pm 1.1) & \mbox{L247}\ (2.7\ \pm 1.0)\\ 1231\ (2.1\ \pm 1.2) & \mbox{E262}\ (2.5\ \pm 1.1) & \mbox{L274}\ (2.6\ \pm 0.9)\\ 1235\ (1.7\ \pm 1.1) & \mbox{H266}\ (2.5\ \pm 1.1) & \mbox{L274}\ (2.6\ \pm 0.9)\\ 1235\ (1.7\ \pm 1.1) & \mbox{H266}\ (2.5\ \pm 1.1) & \mbox{H274}\ (2.6\ \pm 0.9)\\ 1235\ (1.7\ \pm 1.1) & \mbox{H266}\ (2.5\ \pm 1.1) & \mbox{H318}\ (2.8\ \pm 0.9)\\ 1246\ (2.1\ \pm 1.2) & \mbox{H273}\ (2.2\ \pm 1.1) & \mbox{H318}\ (2.8\ \pm 0.9)\\ 1246\ (2.1\ \pm 1.2) & \mbox{H273}\ (2.2\ \pm 1.1) & \mbox{H318}\ (2.8\ \pm 0.9)\\ 1246\ (2.1\ \pm 1.2) & \mbox{H270}\ (2.5\ \pm 1.1) & \mbox{H318}\ (2.8\ \pm 0.9)\\ 1246\ (2.1\ \pm 1.2) & \mbox{H270}\ (2.5\ \pm 1.1) & \mbox{H318}\ (2.8\ \pm 0.9)\\ 1248\ (2.0\ \pm 1.2) & \mbox{H310}\ (2.5\ \pm 1.1) & \mbox{H310}\ (2.5\ \pm 1.0) & \mbox{H310}\ (2.5\ \pm 1.1) & \mbox{H310}\ (2.5\ \pm 1.0) & \mbox{H310}\ (2.5\ \pm 1.1) & \mbox{H319}\ (2.6\ \pm 1.0) & \mbox{H310}\ (2.6\ \pm 1.0) & \mbox{H310}\$			$E262 (2.4 \pm 1.3)$					
$\begin{array}{c} 1239\ (2.0\ \pm 1.3)\\ 1300\ (2.2\ \pm 1.1)\\ \hline \\ M8\ (41) & P217\ (1.8\ \pm 1.1) & T245\ (2.3\ \pm 1.2) & V225\ (2.8\ \pm 0.9)\\ K223\ (1.7\ \pm 1.1) & T249\ (2.4\ \pm 1.1) & G232\ (2.7\ \pm 0.9)\\ L226\ (2.0\ \pm 1.2) & N251\ (2.3\ \pm 1.1) & L274\ (2.6\ \pm 0.9)\\ K233\ (1.7\ \pm 1.1) & H266\ (2.5\ \pm 1.1) & L274\ (2.6\ \pm 0.9)\\ K233\ (1.7\ \pm 1.1) & H266\ (2.5\ \pm 1.1) & L274\ (2.6\ \pm 0.9)\\ K233\ (1.7\ \pm 1.1) & G272\ (2.5\ \pm 1.1) & N318\ (2.8\ \pm 0.9)\\ T235\ (1.7\ \pm 1.1) & G272\ (2.5\ \pm 1.1) & N318\ (2.8\ \pm 0.9)\\ T246\ (2.1\ \pm 1.2) & H290\ (2.5\ \pm 1.1) & N318\ (2.8\ \pm 0.9)\\ T246\ (2.1\ \pm 1.2) & H290\ (2.5\ \pm 1.1) & N318\ (2.8\ \pm 0.9)\\ H258\ (1.9\ \pm 1.2) & H310\ (2.5\ \pm 1.1)\\ S250\ (1.9\ \pm 1.2) & H310\ (2.5\ \pm 1.0)\\ H258\ (1.9\ \pm 1.2) & T319\ (2.6\ \pm 1.0)\\ S260\ (1.9\ \pm 1.2) & S275\ (1.8\ \pm 1.0)\\ S260\ (1.9\ \pm 1.2) & G296\ (1.9\ \pm 1.1)\\ T292\ (1.7\ \pm 1.1) & S294\ (1.9\ \pm 1.2)\\ G296\ (1.9\ \pm 1.1) & S294\ (1.9\ \pm 1.2)\\ G296\ (1.9\ \pm 1.1) & S313\ (1.8\ \pm 1.1)\\ \end{array}$			$Y2/3 (2.2 \pm 1.4)$					
$\begin{array}{c} 1310\ (2.0\ \pm 1.3)\\ 1310\ (2.2\ \pm 1.1) \\ \hline 1310\ (2.2\ \pm 1.1)$			$L_{289}(2.0 \pm 1.3)$ T206 (2.0 ± 1.3)					
$\begin{array}{c} \text{M8 (41)} & \text{P217 (1.8 \pm 1.1)} & \text{T245 (2.3 \pm 1.2)} & \text{V225 (2.8 \pm 0.9)} \\ \text{K223 (1.7 \pm 1.1)} & \text{T249 (2.4 \pm 1.1)} & \text{G232 (2.7 \pm 0.9)} \\ \text{L226 (2.0 \pm 1.2)} & \text{N251 (2.3 \pm 1.1)} & \text{L247 (2.7 \pm 1.0)} \\ \text{T231 (2.1 \pm 1.2)} & \text{E262 (2.5 \pm 1.1)} & \text{L274 (2.6 \pm 0.9)} \\ \text{K233 (1.7 \pm 1.1)} & \text{G272 (2.5 \pm 1.1)} & \text{N318 (2.8 \pm 0.9)} \\ \text{T235 (1.7 \pm 1.1)} & \text{G272 (2.5 \pm 1.1)} & \text{N318 (2.8 \pm 0.9)} \\ \text{T246 (2.1 \pm 1.2)} & \text{Y273 (2.2 \pm 1.1)} \\ \text{L248 (2.0 \pm 1.2)} & \text{H290 (2.5 \pm 1.1)} \\ \text{S250 (1.9 \pm 1.2)} & \text{T319 (2.6 \pm 1.0)} \\ \text{S260 (1.9 \pm 1.2)} & \text{T319 (2.6 \pm 1.0)} \\ \text{S275 (1.8 \pm 1.0)} \\ \text{S283 (1.9 \pm 1.2)} \\ \text{L289 (2.0 \pm 1.1)} \\ \text{T293 (1.8 \pm 1.1)} \\ \text{S294 (1.9 \pm 1.2)} \\ \text{S294 (1.9 \pm 1.1)} \\ \text{S307 (1.9 \pm 1.1)} \\ \text{S313 (1.8 \pm 1.1)} \\ \text{S313 (1.8 \pm 1.1)} \end{array}$			$I_{300}(2.0 \pm 1.3)$ I 310 (2.2 ±1.1)					
$\begin{array}{c} \text{His}(41) & \text{H}217(1.3\pm1.1) & \text{H}249(2.4\pm1.1) & \text{H}222(2.3\pm0.5) \\ \text{K}223(1.7\pm1.1) & \text{T}249(2.4\pm1.1) & \text{G}232(2.7\pm0.9) \\ \text{L}226(2.0\pm1.2) & \text{N}251(2.3\pm1.1) & \text{L}247(2.7\pm1.0) \\ \text{T}231(2.1\pm1.2) & \text{E}262(2.5\pm1.1) & \text{L}274(2.6\pm0.9) \\ \text{K}233(1.7\pm1.1) & \text{H}266(2.5\pm1.1) & \text{Y}304(2.8\pm0.9) \\ \text{T}235(1.7\pm1.1) & \text{G}272(2.5\pm1.1) & \text{N}318(2.8\pm0.9) \\ \text{T}246(2.1\pm1.2) & \text{Y}273(2.2\pm1.1) \\ \text{L}248(2.0\pm1.2) & \text{H}290(2.5\pm1.1) \\ \text{S}250(1.9\pm1.2) & \text{L}310(2.3\pm1.0) \\ \text{H}258(1.9\pm1.2) & \text{T}319(2.6\pm1.0) \\ \text{S}260(1.9\pm1.2) \\ \text{S}275(1.8\pm1.0) \\ \text{S}283(1.9\pm1.2) \\ \text{L}289(2.0\pm1.1) \\ \text{T}292(1.7\pm1.1) \\ \text{T}293(1.8\pm1.1) \\ \text{S}294(1.9\pm1.2) \\ \text{G}296(1.9\pm1.1) \\ \text{L}298(1.6\pm1.0) \\ \text{T}306(2.0\pm1.1) \\ \text{S}307(1.9\pm1.1) \\ \text{E}308(1.7\pm1.1) \\ \text{S}313(1.8\pm1.1) \\ \end{array}$		M8(41)	$P217(18 \pm 11)$	$T^{2}/(5)(2)^{3} + 1(2)$	$V225(2.8\pm0.9)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		WIG (41)	$K_{223}(1.7 \pm 1.1)$	$T249(2.4 \pm 1.2)$	$G_{232}(2.0 \pm 0.9)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$L_{226} (2.0 \pm 1.2)$	$N251(2.3 \pm 1.1)$	$L_{247} (2.7 \pm 1.0)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$T231 (2.1 \pm 1.2)$	$E262 (2.5 \pm 1.1)$	$L274 (2.6 \pm 0.9)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			K233 (1.7 ± 1.1)	H266 (2.5 ± 1.1)	$Y304(2.8 \pm 0.9)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			T235 (1.7 ± 1.1)	G272 (2.5 ± 1.1)	N318 (2.8 ± 0.9)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			T246 (2.1 ± 1.2)	$Y273(2.2 \pm 1.1)$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			L248 (2.0 ± 1.2)	H290 (2.5 ± 1.1)				
H258 (1.9 ± 1.2) S260 (1.9 ± 1.2) S275 (1.8 ± 1.0) S283 (1.9 ± 1.2) L289 (2.0 ± 1.1) T292 (1.7 ± 1.1) T293 (1.8 ± 1.1) S294 (1.9 ± 1.2) G296 (1.9 ± 1.1) L298 (1.6 ± 1.0) T306 (2.0 ± 1.1) S307 (1.9 ± 1.1) E308 (1.7 ± 1.1) S313 (1.8 ± 1.1)			S250 (1.9 ± 1.2)	L310 (2.3 ± 1.0)				
$\begin{array}{c} S260\ (1.9\pm1.2)\\ S275\ (1.8\pm1.0)\\ S283\ (1.9\pm1.2)\\ L289\ (2.0\pm1.1)\\ T292\ (1.7\pm1.1)\\ T293\ (1.8\pm1.1)\\ S294\ (1.9\pm1.2)\\ G296\ (1.9\pm1.1)\\ L298\ (1.6\pm1.0)\\ T306\ (2.0\pm1.1)\\ S307\ (1.9\pm1.1)\\ E308\ (1.7\pm1.1)\\ S313\ (1.8\pm1.1) \end{array}$			H258 (1.9 ± 1.2)	T319 (2.6 ± 1.0)				
$\begin{array}{c} S275\ (1.8\pm1.0)\\ S283\ (1.9\pm1.2)\\ L289\ (2.0\pm1.1)\\ T292\ (1.7\pm1.1)\\ T293\ (1.8\pm1.1)\\ S294\ (1.9\pm1.2)\\ G296\ (1.9\pm1.1)\\ L298\ (1.6\pm1.0)\\ T306\ (2.0\pm1.1)\\ S307\ (1.9\pm1.1)\\ E308\ (1.7\pm1.1)\\ S313\ (1.8\pm1.1) \end{array}$			$S260(1.9 \pm 1.2)$					
$\begin{array}{c} 3233\ (1.9\pm1.2)\\ L289\ (2.0\pm1.1)\\ T292\ (1.7\pm1.1)\\ T293\ (1.8\pm1.1)\\ S294\ (1.9\pm1.2)\\ G296\ (1.9\pm1.1)\\ L298\ (1.6\pm1.0)\\ T306\ (2.0\pm1.1)\\ S307\ (1.9\pm1.1)\\ E308\ (1.7\pm1.1)\\ S313\ (1.8\pm1.1)\end{array}$			$S_{2/5}(1.8 \pm 1.0)$ $S_{2/5}(1.0 \pm 1.2)$					
$\begin{array}{c} \text{T293} (2.6 \pm 1.1) \\ \text{T292} (1.7 \pm 1.1) \\ \text{T293} (1.8 \pm 1.1) \\ \text{S294} (1.9 \pm 1.2) \\ \text{G296} (1.9 \pm 1.1) \\ \text{L298} (1.6 \pm 1.0) \\ \text{T306} (2.0 \pm 1.1) \\ \text{S307} (1.9 \pm 1.1) \\ \text{E308} (1.7 \pm 1.1) \\ \text{S313} (1.8 \pm 1.1) \end{array}$			$1.289(2.0 \pm 1.1)$					
$\begin{array}{c} T293\ (1.8\pm1.1)\\ S294\ (1.9\pm1.2)\\ G296\ (1.9\pm1.1)\\ L298\ (1.6\pm1.0)\\ T306\ (2.0\pm1.1)\\ S307\ (1.9\pm1.1)\\ E308\ (1.7\pm1.1)\\ S313\ (1.8\pm1.1) \end{array}$			$T_{292} (1.7 \pm 1.1)$					
$\begin{array}{c} S294\ (1.9\pm1.2)\\ G296\ (1.9\pm1.1)\\ L298\ (1.6\pm1.0)\\ T306\ (2.0\pm1.1)\\ S307\ (1.9\pm1.1)\\ E308\ (1.7\pm1.1)\\ S313\ (1.8\pm1.1) \end{array}$			$T293 (1.8 \pm 1.1)$					
$ \begin{array}{c} G296\ (1.9\pm1.1)\\ L298\ (1.6\pm1.0)\\ T306\ (2.0\pm1.1)\\ S307\ (1.9\pm1.1)\\ E308\ (1.7\pm1.1)\\ S313\ (1.8\pm1.1) \end{array} $			$S294(1.9 \pm 1.2)$					
$ \begin{array}{c} L298 \ (1.6 \pm 1.0) \\ T306 \ (2.0 \pm 1.1) \\ S307 \ (1.9 \pm 1.1) \\ E308 \ (1.7 \pm 1.1) \\ S313 \ (1.8 \pm 1.1) \end{array} $			$G296(1.9 \pm 1.1)$					
T306 (2.0 ± 1.1) S307 (1.9 ± 1.1) E308 (1.7 ± 1.1) S313 (1.8 ± 1.1)			L298 (1.6 ± 1.0)					
$\begin{array}{c} \text{S307} \ (1.9 \pm 1.1) \\ \text{E308} \ (1.7 \pm 1.1) \\ \text{S313} \ (1.8 \pm 1.1) \end{array}$			T306 (2.0 ± 1.1)					
$\begin{array}{c} \text{E308} \ (1.7 \pm 1.1) \\ \text{S313} \ (1.8 \pm 1.1) \end{array}$			S307 (1.9 ± 1.1)					
S313 (1.8 ± 1.1)			E308 (1.7 ± 1.1)					
			$S313(1.8 \pm 1.1)$					
$L314 (1.8 \pm 1.1)$			L314 (1.8 ± 1.1)					

Table S6. List of positively selected sites predicted by PAML (reference strain: ON67-1210A)

PSS: Positively selected sites, S.E.: Square root of the variance.

#AA: Total number of amino acids with posterior probability greater than 50%

ON67-1210A (accession number: JN257693) was used as reference strain in both analyses.