Fig.S1 Metabolism overview of the differentially expressed genes in the cob (A) and florets (B) under LN. The red and blue colors indicated up- or down-regulated expression under LN compared to control, respectively.

Fig.S2 Transcription levels of *ZmAAP4* and *ZmVAAT3* in gene overexpression lines, with *AtTub4* as the control (Pfaffl, 2001). #1, #2, and #3 denoted three independent transgenic lines.

	Befor	e sowing		V8	V12		Total ((kg ha ⁻¹)	
Treatment	N	P ₂ O ₅	K ₂ O	N	N	K ₂ O	N	P ₂ O ₅	K ₂ O
ON	60	135	80	120	70	40	250	135	120
LN		135	80			40	0	135	120
LP	60		80	120	70	40	250		120
LK	60	135		120	70		250	135	

Table S1. Fertilization practice among different nutrient treatments.

 Table S2. Primer sequences used for qRT- PCR.
 PCR.

Gene ID	Forward primer (5'-3')	Reverse primer (5'-3')
GRMZM2G432926	AACCAGCGAAAGGCGTGGGAGG	AAACTTGGAATGGAAGCCGATGAAA
GRMZM2G072322	GCCACCAGAGTGATGTTTGA	GGGACGAGTAGCCGTTGAGC
GRMZM2G400156	TGCTGTGGATGCTGGAGAAC	AAGAATGCCGAACGAAATGA
GRMZM2G062129	TCCAGGGATACTGAGGATGA	AGGGAGCAGACTTCTATTTACAC
GRMZM2G142680	GTACCATCGTCCATCAATCCC	CGACAACGACATCAACTACCG
GRMZM2G001799	TGGACCAGATCGGCAAGGAATG	TGGCGACACGCACAACTCAAAA
GRMZM2G076345	CGACTACTACGCCTGCTGAACTGC	AAATCAAACCAACGAGCCAAAGC
GRMZM2G437575	TGAAGCCGTTCGTGATTCCAAA	TCGTTCGTCACCACATCCCACA
GRMZM2G318780	GCGGCAGACGGTAGCCAATAA	CAAGGAGATGCTGGGCAACAGAG
GRMZM2G311182	TGCCTGGTCTGTACCGAGTTG	GGAGAAGAGGATGGGCTTTGA
GRMZM2G081192	CTCAGCGACGGCTACTCCAA	ATGAACACGGCGAACCCAAT
GRMZM2G051619	CGTGGAGGGAGTACAAGAA	GATGTGGTGCGACGATAGA
GRMZM2G112377	TCCTTTCTGTCTGGTGCTTGTG	ACGGTGACCTCCGGTTATTTAG
GRMZM2G161905	ACGAGTATAGATGGCAAATGGGTCA	TTGGCAAGGAGACGAACATAAGAAT

	Protein coding		Pseudogen	le	Transposable element	
	Tags	Genes	Tags	Genes	Tags	Genes
Sense	41,751,419	32,805	236,951	1,990	468,513	1,974
Antisense	10,589,158	29,065	828,149	1,976	226,330	1,700
Total	52,340,577	61,870	1,065,100	3,966	694,843	3,674

 Table S3. Total tags and genes generated by DGE sequencing.

Gene ID	Fold change		Annotation		
	(Cob v	vs Floret)			
	DGE	qRT-PCR	-		
GRMZM2G134888	5.0	4.5	Amino acid transporter family protein		
GRMZM2G162893	15.2	16.3	Ethylene-responsive protein -related		
GRMZM2G413887	6.5	6.2	GRAM domain-containing protein / ABA-responsive		
			protein-related		
GRMZM2G475683	8.9	8.8	Auxin-responsive family protein		
GRMZM2G108537	20	19.2	Nodulin MtN21 family protein		
GRMZM2G179349	43.1	46.6	Nodulin MtN3 family protein		
GRMZM2G045171	15.0	16.7	SUS6, ATSUS6 SUS6 (Sucrose Synthase 6)		
GRMZM2G085199	8.5	8.7	Ethylene-responsive protein -related		
GRMZM2G078024	52.5	54.6	PROT1, ATPROT1 PROT1 (Proline Transporter 1);		
			L-proline transmembrane transporter		
GRMZM2G019974	38.6	41.4	ATOCT2 (Arabidopsis Thaliana Organic Cation/Carnitine		
			Transporter 2)		
GRMZM2G432926	12.7	13.8	PIP2B, PIP2;2 PIP2B (Plasma Membrane Intrinsic Protein		
			2); water channel		
GRMZM2G113167	9.3	9.1	GRAM domain-containing protein / ABA-responsive		
			protein-related		
GRMZM2G175140	0.01	0.01	ATAMT1;2, AMT1;2 ATAMT1;2 (Ammonium		
			Transporter 1;2)		
GRMZM2G080843	0.01	0.01	Amino acid transporter family protein		
GRMZM2G453565	0.1	0.1	AtGH9C3 AtGH9C3 (Arabidopsis thaliana glycosyl		
			hydrolase 9C3); carbohydrate binding		
GRMZM2G088861	0.01	0.03	Leucine-rich repeat protein, putative		
GRMZM2G005284	0.01	0.02	ARF10 ARF10 (Auxin Response Factor 10)		
GRMZM2G326707	0.1	0.12	ATPT2, PHT1;4 ATPT2 (Arabidopsis Thaliana Phosphate		
			Transporter 2); carbohydrate transmembrane transporter		
GRMZM2G008792	0.2	0.11	ATCKX6, CKX6, ATCKX7 CKX6 (Cytokinin		
			oxidase/dehydrogenase 6)		
GRMZM2G333980	0.2	0.18	Polygalacturonase Inhibiting Protein 1		

Table S4. DGE data verification by qRT- PCR.

Treatment	Primary root length (cm)					Average rosette leaves per plant			
	Col-0	ZmAAP4-OE-1	ZmAAP4-OE-2	ZmAAP4-OE-3	Col-0	ZmAAP4-OE-1	ZmAAP4-OE-2	ZmAAP4-OE-3	
3 mM NO ₃	9.78 ± 0.11	9.92 ± 0.12	9.87 ± 0.21	9.83 ± 0.08	10.72 ± 0.11	10.81 ± 0.13	10.91 ± 0.21	10.78 ± 0.14	
L-Gly (3 mM)	5.22 ± 0.12	$4.12\pm0.10*$	$4.32 \pm 0.12*$	$4.25\pm0.14*$	$7.94 \pm \ 0.24$	7.07 ± 0.13 *	7.12 ± 0.17*	$6.94\pm0.14*$	
L-Ala (3 mM)	7.50 ± 0.12	8.10 ± 0.13	8.10 ± 0.12	8.28 ± 0.12	9.08 ± 0.14	$7.24 \pm 0.17 **$	7.43 ± 0.13**	7.33 ± 0.13**	
L-Val (300 µM)	6.71 ± 0.12	2.00 ± 0.13 **	$2.10 \pm 0.11 **$	$2.12 \pm 0.12 **$	9.12 ± 0.14	$7.33 \pm 0.17 **$	$7.25 \pm 0.15 **$	7.33 ± 0.13**	
L-Leu (300 µM)	3.52 ± 0.13	2.73 ± 0.12 **	$2.63 \pm 0.14 **$	2.71 ± 0.14 **	9.33 ± 0.11	9.12 ± 0.12	9.22 ± 0.14	9.13 ± 0.15	
L-Ile (3 mM)	3.0 ± 0.12	$0.9 \pm 0.0 **$	$1.1 \pm 0.0**$	$0.9\pm0.0**$	11.11 ± 0.11	$9.07 \pm 0.15 **$	$9.33 \pm 0.17 **$	$9.42 \pm 0.15 **$	
L-Ser (300 µM)	5.13 ± 0.12	5.53± 0.11	5.61 ± 0.11	5.54 ± 0.13	9.15± 0.13	7.22± 0.13**	7.32± 0.13**	7.41±0.13**	
L-Cys (3 mM)	6.10 ± 0.12	$1.20 \pm 0.0 **$	1.24 ± 0.12 **	$1.26 \pm 0.0 **$	9.24 ± 0.14	7.12 ± 0.17 **	$7.16 \pm 0.17 **$	$7.33 \pm 0.17 **$	
L-Thr (300 µM)	4.82 ± 0.12	2.10 ± 0.12 **	2.00 ± 0.10 **	$2.10 \pm 0.10 **$	8.12 ± 0.11	7.09 ± 0.13*	$7.23 \pm 0.17*$	$7.21 \pm 0.15*$	
L-Met (300 µM)	3.50 ± 0.12	$1.00 \pm 0.0 **$	$1.00 \pm 0.0 **$	$1.00 \pm 0.0 **$	10.23 ± 0.14	$11.12 \pm 0.17*$	$11.21 \pm 0.14*$	$11.33 \pm 0.15*$	
L-Pro (100 µM)	9.10 ± 0.12	8.32 ± 0.13	8.40 ± 0.12	8.28 ± 0.12	8.13 ± 0.11	$7.33 \pm 0.15 **$	7.31 ± 0.17 **	7.15 ± 0.13**	
L-Phe (300 µM)	6.10 ± 0.12	$1.72 \pm 0.11 **$	$1.70 \pm 0.11 **$	$1.60 \pm 0.10 **$	9.31 ± 0.14	7.24 ± 0.17 **	7.33 ± 0.13**	$7.13 \pm 0.15 **$	
L-Tyr (3 mM)	5.12 ± 0.12	5.22 ± 0.15	5.23± 0.21	5.33 ± 0.15	6.12 ± 0.22	6.17 ± 0.12	6.24 ± 0.24	6.31 ± 0.22	
L-Trp (3 mM)	2.32 ± 0.12	2.13 ± 0.12	1.94 ± 0.12	2.12 ± 0.12	6.11 ± 0.23	4.21 ± 0.22**	4.05 ± 0.21**	4.13 ± 0.16**	
L-His (300 µM)	4.22 ± 0.12	2.50 ± 0.12 **	2.57 ± 0.12 **	$2.60 \pm 0.10 **$	9.12 ± 0.11	$7.16 \pm 0.15 **$	7.32 ± 0.14 **	7.08 ± 0.14 **	
L-Lys (300 µM)	2.30 ± 0.11	$1.20 \pm 0.08*$	$1.23 \pm 0.12*$	$1.21 \pm 0.21*$	8.33 ± 0.14	7.80 ± 0.17 **	$7.92 \pm 0.17 **$	$7.92 \pm 0.15 **$	
L-Arg (300 µM)	7.21 ± 0.12	$1.42 \pm 0.14 **$	1.52 ± 0.13 **	$1.42 \pm 0.12 **$	9. 33 ± 0.14	7. $22 \pm 0.14^{**}$	7. $12 \pm 0.14^{**}$	7. 32 ± 0.14 **	
L-Asp (3 mM)	7.10 ± 0.12	7.10 ± 0.10	7.12 ± 0.10	7.12 ± 0.13	6.13 ± 0.16	6.15 ± 0.132	6.25 ± 0.21	6.35 ± 0.22	
L-Glu (3 mM)	12.10 ± 0.13	$10.5 \pm 0.10^{**}$	$10.61 \pm 0.10 **$	10.58 ± 0.13 **	8.24 ± 0.11	$9.08\pm0.12*$	$9.16\pm0.17*$	$9.33 \pm 0.15*$	
L-Asn (300 µM)	8.40 ± 0.12	9.00 ± 0.13	9.10 ± 0.10	9.12 ± 0.13	9.24 ± 0.14	$10.10\pm0.17*$	$10.12\pm0.17*$	10. $00 \pm 0.17*$	
L-Gln (3 mM)	12.06 ± 0.12	$10.00 \pm 0.13 **$	$10.10 \pm 0.12 **$	$10.08 \pm 0.10^{\texttt{**}}$	8.11 ± 0.12	7.12 ± 0.22*	$7.25 \pm 0.12*$	7.33 ± 0.12*	
GABA (3 mM)	7.20 ± 0.12	6.7 0± 0.12	6.60 ± 0.10	6.70 ± 0.10	9.12 ± 0.14	7.12 ± 0.12**	$7.25 \pm 0.00 **$	7.08 ± 0.0-0**	
L-Cit (100 µM)	9.21 ± 0.21	6.32 ± 0.12 **	6.41 ± 0.15 **	$6.62 \pm 0.20 **$	9.24 ± 0.08	9.15 ± 0.10	9.08 ± 0.12	9.10 ± 0.22	

Table S9. Phenotypes of ZmAAP4-OE seedlings 12 days after transfer onto ATS medium supplemented with different amino acids and 3 mM NO₃

Treatment			Fresh weight per plant (g)					
	Col-0	ZmAAP4-OE-1	ZmAAP4-OE-2	ZmAAP4-OE-3	Col-0	ZmAAP4-OE-1	ZmAAP4-OE-2	ZmAAP4-OE-3
3 mM NO ₃ ⁻	2.3 ± 0.1	2.2 ± 0.1	2.3 ± 0.1	2.3 ± 0.1	0.0320 ± 0.001	0.0335 ± 0.0010	0.0348 ± 0.0010	0.0332 ± 0.0010
L-Gly (3 mM)	1.5 ± 0.1	0.9± 0.1*	$0.9 \pm 0.1*$	0.9± 0.1*	0.0120 ± 0.003	$0.0067 \pm 0.0003 **$	0.0064 ± 0.0002 **	$0.0063 \pm 0.0003 **$
L-Ala (3 mM)	2.1 ± 0.1	2.7 ± 0.1 **	2.6 ± 0.1 **	2.7 ± 0.1 **	0.0280 ± 0.001	0.0345 ± 0.0010 **	$0.0348 \pm 0.0010 **$	0.0342 ± 0.0010 **
L-Val (300 µM)	1.6 ± 0.1	0.8 ± 0.0 **	0.8 ± 0.0 **	0.8 ± 0.0 **	0.0253 ± 0.001	0.0190 ± 0.001 **	0.0194 ± 0.001 **	$0.0189 \pm 0.001 **$
L-Leu (300 µM)	2.2 ± 0.1	2.2 ± 0.1	2.2 ± 0.1	2.2 ± 0.1	0.0280 ± 0.001	$0.0367 \pm 0.002 **$	$0.0353 \pm 0.002 **$	$0.0345 \pm 0.001 **$
L-Ile (3 mM)	2.3 ± 0.1	0.8 ± 0.0 **	0.8 ± 0.0 **	0.8 ± 0.0 **	0.0250 ± 0.001	0.0073 ±0.0003***	$0.0070 \pm 0.0004 ***$	0.0075 ±0.0003***
L-Ser (300 µM)	2.2 ± 0.1	$1.8 \pm 0.1 **$	1.7 ± 0.1 **	1.6 ± 0.1 **	0.0300 ± 0.001	0.0257 ± 0.001 **	$0.0244 \pm 0.001 **$	$0.0252 \pm 0.001 **$
L-Cys (3 mM)	2.0 ± 0.1	$1.0 \pm 0.0^{**}$	$1.0 \pm 0.0**$	$0.9 \pm 0.0 **$	0.0340 ± 0.001	0.0107 ± 0.002 **	0.0112 ± 0.001 **	$0.0102 \pm 0.002 **$
L-Thr (300 µM)	1.0 ± 0.1	0.9 ± 0.0	0.9 ± 0.0	0.9 ± 0.0	0.0233 ± 0.001	0.0100 ± 0.001 **	0.0100 ± 0.001 **	0.0100 ± 0.001 **
L-Met (300 µM)	2.7 ± 0.1	1.6 ± 0.1 **	1.5 ± 0.1 **	1.6 ± 0.1 **	0.0267 ± 0.001	0.0143 ± 0.001 **	0.0142 ± 0.001 **	$0.0146 \pm 0.001 **$
L-Pro (100 µM)	1.6 ± 0.1	1.6 ± 0.1	1.6 ± 0.1	1.5 ± 0.1	0.029 ± 0.001	0.020 ± 0.002 **	0.021 ± 0.001 **	0.022 ± 0.001 **
L-Phe (300 µM)	1.7 ± 0.1	$1.2 \pm 0.1*$	$1.1 \pm 0.1*$	$1.2 \pm 0.1*$	0.0213 ± 0.001	0.0100 ± 0.001 **	0.0120 ± 0.001 **	0.0110 ± 0.001 **
L-Tyr (3 mM)	1.6 ± 0.1	$1.2 \pm 0.1*$	$1.2 \pm 0.1*$	$1.2 \pm 0.1 *$	$0.0067{\pm}\ 0.0002$	$0.0020 \pm 0.0001 **$	$0.0020 \pm 0.0001 **$	$0.0020 \pm 0.0001 **$
L-Trp (3 mM)	0.8 ± 0.0	$0.6 \pm 0.0*$	$0.6 \pm 0.0*$	$0.6 \pm 0.0*$	0.0067 ± 0.0002	0.0020 ± 0.0001 **	0.0020 ± 0.0001 **	0.0020 ± 0.0001 **
L-His (300 µM)	1.7 ± 0.1	1.5 ± 0.1	1.5 ± 0.1	1.5 ± 0.1	0.0177 ± 0.001	0.0043 ±0.0003**	0.0045 ±0.0003**	$0.0042 \pm 0.0003 **$
L-Lys (300 µM)	1.4 ± 0.0	0.5 ± 0.0 **	0.5 ± 0.0 **	0.5 ± 0.0 **	0.0237 ± 0.0004	$0.0057 \pm 0.0003 **$	0.0059 ± 0.0004 **	0.0060 ± 0.0004 **
L-Arg (300 µM)	2.2 ± 0.1	$0.8 \pm 0.0 **$	$0.8\pm0.0^{\boldsymbol{**}}$	$0.8 \pm 0.0 **$	0.0333 ± 0.0004	0.0107 ± 0.0003 **	$0.0114 \pm 0.0004 \texttt{**}$	$0.0118 \pm 0.0004 \texttt{**}$
L-Asp (3 mM)	2.0 ± 0.1	2.0 ± 0.1	2.0 ± 0.1	1.9 ± 0.1	0.021 ± 0.001	0.022 ± 0.001	0.023 ± 0.001	0.023 ± 0.001
L-Glu (3 mM)	3.1 ± 0.1	2.5 ± 0.1 **	2.4 ± 0.1 **	2.5 ± 0.1 **	0.03533 ± 0.001	0.0233 ± 0.001**	0.0244 ± 0.001 **	0.0221 ± 0.001 **
L-Asn (300 µM)	1.6 ± 0.1	1.6 ± 0.0	1.6 ± 0.0	1.6 ± 0.0	0.0183 ± 0.001	0.0187 ± 0.001	0.0185 ± 0.001	0.0183 ± 0.001
L-Gln (3 mM)	1.5 ± 0.1	1.5 ± 0.1	1.5 ± 0.1	1.5 ± 0.0	0.0086 ± 0.0002	0.0090 ± 0.0002	0.0092 ± 0.0001	0.0090 ± 0.0002
GABA (3 mM)	1.5 ± 0.0	$1.1 \pm 0.0**$	$1.1 \pm 0.0**$	1.0 ± 0.0 **	0.0123 ± 0.001	$0.0080 \pm 0.0002*$	0.0080±0.0003*	0.0080 ±0.0003*
L-Cit (100 µM)	1.6 ± 0.1	1.4 ± 0.1	1.5 ± 0.1	1.4 ± 0.1	0.028 ± 0.001 **	0.023 ± 0.001 **	0.023 ±0.001**	$0.024 \pm 0.002^{**}$

Values are means \pm SD; n = 12 individuals. Asterisks indicate significant differences as follows: * P < 0.05, ** P < 0.01

Treatment		Primary	root length (cm)		Average rosette leaves per plant			
	Col-0	ZmVAAT3-OE-1	ZmVAAT3-OE-2	ZmVAAT3-OE-3	Col-0	ZmVAAT3-OE-1	ZmVAAT3-OE-2	ZmVAAT3-OE-3
3 mM NO ₃ ⁻	10.12 ± 0.12	10.21 ± 0.13	10.22 ± 0.12	10.13 ± 0.12	8.42 ± 0.14	8.49 ± 0.22	8.33 ± 0.12	8.52 ± 0.08
L-Gly (3 mM)	5.11 ± 0.21	5.0 ± 0.22	5.12 ± 0.21	5.11 ± 0.22	8.22 ± 0.24	7.11 ± 0.13 *	7.34 ± 0.17*	$7.23 \pm 0.14*$
L-Ala (3 mM)	8.13 ± 0.11	13.22 ± 0.21**	13.11 ± 0.2**	13.0 1± 0.31**	8 .33 ± 0.14	7.36 ± 0.12*	$7.24 \pm 0.16^*$	$7.33 \pm 0.21*$
L-Val (300 µM)	3.51 ± 0.22	$5.12 \pm 0.21*$	$5.21 \pm 0.12*$	5.2 2± 0.22*	8.11 ± 0.12	$7.22 \pm 0.22*$	7.33 ± 0.14*	$7.14 \pm 0.15*$
L-Leu (300 µM)	3.32 ± 0.21	10.52 ± 0.23**	10.53 ± 0.23**	10.43 ± 0.24 **	8.23 ± 0.12	8.31 ± 0.13	8.25 ± 0.17	8.35 ± 0.13
L-Ile (3 mM)	3.71 ± 0.21	3.61 ± 0.12	3.61 ± 0.31	3.51 ± 0.22	7.52 ± 0.22	5.34 ± 0.23**	5.32 ± 0.24 **	5.31 ± 0.14**
L-Ser (300 µM)	5.81 ± 0.21	$3.52 \pm 0.12 **$	$3.42 \pm 0.16 **$	3.51 ± 0.21 **	8.41 ± 0.14	6.32 ± 0.22 **	6.53 ± 0.24 **	6.42±0.14**
L-Cys (3 mM)	6.22 ± 0.22	5.51 ± 0.23*	$5.42 \pm 0.24*$	$5.52 \pm 0.16^*$	8.21 ± 0.11	7.24 ± 0.12*	$7.33 \pm 0.15*$	$7.50 \pm 0.19^*$
L-Thr (300 µM)	4.22 ± 0.12	$3.53 \pm 0.13*$	$3.52 \pm 0.12*$	$3.43 \pm 0.12*$	6.32 ± 0.22	5.25 ± 0.14 **	5.33 ± 0.12**	5.25± 0.17**
L-Met (300 µM)	3.81 ± 0.21	$9.53 \pm 0.22 **$	$9.41 \pm 0.22 **$	$9.52 \pm 0.13 **$	$9.21 \pm 0.21 $	7.33 ± 0.14*	7.41 ± 0.13*	7.34 ± 0.12*
L-Pro (100 µM)	10.62 ± 0.22	10.71 ± 0.21	10.61 ± 0.23	10.72 ± 0.22	10.52 ± 0.22	8.23 ± 0.12	8.32 ± 0.23	8.18 ± 0.13
L-Phe (300 µM)	8.21 ± 0.22	11.12 ± 0.22 **	11.32 ± 0.21 **	11.41 ± 0.22 **	8.62 ± 0.21	9.73 ± 0.23*	$9.81 \pm 0.17*$	$9.64 \pm 0.12*$
L-Tyr (3 mM)	5.32 ± 0.14	5.32 ± 0.13	5.43± 0.23	5.43 ± 0.23	6.24 ± 0.22	6.32 ± 0.12	6.34 ± 0.24	6.61 ± 0.22
L-Trp (3 mM)	2.42 ± 0.12	2.03 ± 0.13	1.92 ± 0.13	2.02 ± 0.13	6.51 ± 0.23	4.43 ± 0.22**	4.33 ± 0.21**	4.25 ± 0.16**
L-His (300 µM)	3.00 ± 0.10	$2.51 \pm 0.22*$	$2.62 \pm 0.12*$	$2.42 \pm 0.13*$	8.53 ± 0.21	6.32 ± 0.22 **	$6.38 \pm 0.13 **$	6.51 ± 0.17 **
L-Lys (300 µM)	2.10 ± 0.13	2.03 ± 0.12	2.03 ± 0.12	1.90 ± 0.12	7.23 ± 0.12	5.32 ± 0.23**	5.37 ± 0.22**	5.38 ± 0.12**
L-Arg (300 µM)	8.31 ± 0.21	8.82 ± 0.12	8.9 2± 0.12	8.82 ± 0.12	8.33 ± 0.12	8.24 ± 0.21	8.12 ± 0.11	8.37 ± 0.13
L-Asp (3 mM)	7.72 ± 0.12	7.62 ± 0.23	7.73 ± 0.23	7.71 ± 0.13	6.33 ± 0.16	6.25 ± 0.12	6.32 ± 0.21	6.33 ± 0.22
L-Glu (3 mM)	8.52 ± 0.18	8.62 ± 0.25	8.72 ± 0.25	8.64 ± 0.25	9.25 ± 0.22	7.09 ± 0.12 **	7.33 ± 0.12 **	7.42 ± 0.15 **
L-Asn (300 µM)	8.62 ± 0.22	$11.56 \pm 0.23 **$	$11.65 \pm 0.34 **$	$11.44 \pm 0.24 **$	8.23 ± 0.16	8.12 ± 0.19	8.09 ± 0.21	8.0± 0.13
L-Gln (3 mM)	13.12 ± 0.21	$11.61 \pm 0.22*$	$11.52 \pm 0.21*$	$11.51 \pm 0.23*$	7.22 ± 0.12	8.32 ± 0.22*	8 .12 ± 0.12*	8.22 ± 0.12*
GABA (3 mM)	9.12 ± 0.12	7.24 ± 0.11 **	7.13 ± 0.11 **	$7.32 \pm 0.12^{**}$	8 .25 ± 0.15	8.25 ± 0.21	8.33 ± 0.13	8.66 ± 0.12
L-Cit (100 µM)	9.22 ± 0.22	6.61 ± 0.21**	6.57 ± 0.22**	6.73 ± 0.22**	8.24 ± 0.13	6.23 ± 0.12**	6.27 ± 0.13**	6.21 ± 0.17**

Table S10. Phenotypes of ZmVAAT3-OE seedlings 12 days after transfer onto ATS medium supplemented with different amino acids and 3 mM NO₃⁻

Treatment	Rosette diameter (cm)				Fresh weight per plant (g)			
	Col-0	ZmVAAT3-OE -1	ZmVAAT3-OE -2	ZmVAAT3-OE -3	Col-0	ZmVAAT3-OE -1	ZmVAAT3-OE -2	ZmVAAT3-OE -3
3 mM NO ₃	1.7 ±0.00	1.7 ±0.00	1.7 ±0.00	1.7 ±0.00	0.0213 ± 0.001	0.0227 ± 0.001	0.0210 ± 0.001	0.0228 ± 0.002
L-Gly (3 mM)	1.4 ± 0.1	1.1 ±0.0**	1.1 ±0.0**	1.1 ±0.0**	0.0100 ± 0.003	0.0097 ± 0.0003	0.0094 ± 0.0002	0.0093 ± 0.0003
L-Ala (3 mM)	1.2 ± 0.10	$1.6 \pm 0.10^{**}$	1.6 ± 0.10 **	1.7 ± 0.10 **	0.0210 ± 0.002	0.0223 ± 0.003	0.0225 ± 0.003	0.0224 ± 0.004
L-Val (300 µM)	1.8 ± 0.1	1.5 ± 0.0**	1.5 ± 0.0**	1.5 ± 0.0**	0.0153 ± 0.002	0.0155 ± 0.002	0.0152 ± 0.003	0.0155 ± 0.003
L-Leu (300 µM)	1.6 ± 0.1	1.5 ± 0.10	1.5 ± 0.10	1.5 ± 0.10	0.0253 ± 0.001	0.0257 ± 0.001	0.0240 ± 0.001	0.0248 ± 0.002
L-Ile (3 mM)	1.6 ± 0.20	0.5 ± 0.00 **	0.5 ± 0.00 **	$0.5 \pm 0.00^{**}$	0.0220 ± 0.003	0.004 ± 0.001 **	0.004 ± 0.001 **	0.004 ± 0.001 **
L-Ser (300 µM)	1.5 ± 0.1	1.1 ± 0.1 **	$1.1 \pm 0.0**$	$1.1 \pm 0.1**$	0.0127 ± 0.0004	$0.0057 \pm 0.0003 **$	$0.0056 \pm 0.0002 **$	$0.0053 \pm 0.0003 **$
L-Cys (3 mM)	1.8 ± 0.10	1.9 ± 0.10	1.9 ± 0.10	2.0 ± 0.10	0.0303 ± 0.0003	0.0190 ± 0.0002 **	$0.0188 \pm 0.0002^{**}$	0.0190 ± 0.0002 **
L-Thr (300 µM)	1.5 ± 0.10	1.4 ± 0.10	1.4 ± 0.10	1.4 ± 0.10	0.0173 ± 0.0001	0.0157 ± 0.0001	0.0156 ± 0.0002	0.0157 ± 0.0001
L-Met (300 µM)	1.5 ± 0.1	1.3 ± 0.1	1.3 ± 0.10	1.3 ± 0.10	0.0103 ± 0.0003	$0.0173 \pm 0.0002 **$	$0.0162 \pm 0.0003 **$	$0.0170 \pm 0.0003 **$
L-Pro (100 µM)	1.8 ± 0.2	1.9 ± 0.1	1.9 ± 0.1	1.8 ± 0.1	0.018 ± 0.001	0.027 ± 0.001 **	0.025 ± 0.002 **	$0.027 \pm 0.001 \texttt{**}$
L-Phe (300 µM)	1.3 ± 0.10	1.3 ± 0.0	1.3 ± 0.10	1.2 ± 0.10	0.0123 ± 0.001	$0.0163 \pm 0.001*$	$0.0162 \pm 0.001*$	$0.0161 \pm 0.001*$
L-Try (3 mM)	2.1 ± 0.10	1.8 ± 0.10	1.8 ± 0.20	1.8 ± 0.10	0.0117 ±0.0003	0.0114 ± 0.0003	0.0115 ±0.0003	0.0111 ±0.0003
L-Trp (3 mM)	0.7 ± 0.00	$0.3 \pm 0.00^{**}$	$0.3 \pm 0.00^{**}$	$0.3 \pm 0.00^{**}$	0.0067 ± 0.0002	$0.0020 \pm 0.0001^{**}$	$0.0020 \pm 0.0001^{**}$	0.0020 ± 0.0001 **
L-His (300 µM)	1.1 ± 0.1	0.8 ± 0.0*	$0.8 \pm 0.0*$	$0.8 \pm 0.0*$	0.0111 ± 0.001	$0.0053 \pm 0.0002 **$	$0.0050 \pm 0.0002^{\ast\ast}$	$0.0058 \pm 0.0001 \texttt{**}$
L-Lys (300 µM)	1.0 ± 0.10	0.7 ± 0.00 **	0.7 ± 0.00 **	0.7 ± 0.00 **	0.029 ± 0.001 **	0.006 ± 0.0 **	0.006 ± 0.0 **	0.006 ± 0.0 **
L-Arg (300 µM)	2.0 ± 0.10	2.0 ± 0.10	2.0 ± 0.10	1.8 ± 0.10	0.0200 ± 0.0002	0.0183 ± 0.0002	0.0181 ± 0.0002	0.0184 ± 0.0002
L-Asp (3 mM)	1.8 ± 0.10	1.6 ± 0.20	1.6 ± 0.10	1.6 ± 0.10	0.024 ± 0.001	0.022 ± 0.001	0.023 ± 0.001	0.023 ± 0.001
L-Glu (3 mM)	2.3 ± 0.20	$1.8 \pm 0.1^{**}$	$1.8 \pm 0.10^{**}$	$1.8 \pm 0.10^{**}$	0.0277 ± 0.0002	$0.0190 \pm 0.0002 **$	$0.0182 \pm 0.0002 \texttt{**}$	$0.0193 \pm 0.0002 **$
L-Asn (300 µM)	1.4 ± 0.10	1.5 ± 0.10	1.5 ± 0.10	1.5 ± 0.10	0.0140 ± 0.0002	$0.0173 \pm 0.0003 *$	$0.0171 \pm 0.0002 *$	$0.0178 \pm 0.0002 *$
L-Gln (3 mM)	2.0 ± 0.20	$1.5 \pm 0.10^{**}$	$1.5 \pm 0.10^{**}$	$1.5 \pm 0.10^{**}$	0.0136 ± 0.0002	$0.0100\pm 0.0002*$	$0.0102 \pm 0.0001 *$	$0.0100 \pm 0.0002*$
GABA (3 mM)	1.9 ± 0.10	1.9 ± 0.20	1.8 ± 0.10	1.8 ± 0.10	0.0170 ± 0.0003	$0.0130 \pm 0.0003*$	$0.0130 \pm 0.003*$	$0.01300 \pm 0.0003*$
L-Cit (100 µM)	1.4 ± 0.1	$0.9 \pm 0.10^{**}$	0.9 ± 0.00 **	$0.9 \pm 0.10^{**}$	0.0113 ± 0.0004	0.0120 ± 0.0002	0.0094 ± 0.0002	0.0092 ± 0.0002

Values are means \pm SD; n = 12 individuals. Asterisks indicate significant differences as follows: * P < 0.05, ** P < 0.01

Dawamatan	Effect.	Amino acids					
rarameter	Effect	ZmAAP4-OE	ZmVAAT3-OE				
Root length	Positive	-	Leu, Ala, Val, Phe, Met, Arg, Asn, Glu				
	Negative	Gly, Val, Cys, Thr, Cit, Leu, Ile, Met, Pro,	Ser, Cys, Thr, Trp, Lys, Gln, Cit, GABA, His				
		Trp, Phe, His, Lys, Arg, Glu, Gln, GABA					
Rosette leaf number	Positive	Met, Tyr, Asp, Glu Asn	Leu, Phe, Tyr, Gln,				
	Negative	Gly, Ala, Val, Leu, Ile, Ser, Cys, Thr, Pro,	Gly, Ala, Val, Ile, Ser, Cys, Thr, Met, Pro,				
		Phe, Trp, His, Lys, Arg, Gln, Cit, GABA	Trp, His, Lys, Arg, Glu, Asn, Cit				
Rosette diameter	Positive	Ala	Ala				
	Negative	Gly, Val, Ile, Ser, Cys, Met, Phe, Tyr, Trp,	Gly, Val, Ile, Ser, Tyr, Trp, His, Lys, Glu,				
		Lys, Arg, Glu, GABA	Gln, Cit				
Fresh weight	Positive	Ala, Leu	Met, Pro, Phe, Asn				
	Negative	Gly, Val, Ile, Ser, Cys, Thr, Met, Pro, Phe,	Ile, Ser, Cys, Trp, His, Lys, Arg, Glu, Gln,				
		Tyr, Trp, His, Lys, Arg, Glu, GABA, Cit	GABA				

 Table S11.
 Effects of different amino acids on growth parameters of ZmAAP4-OE and ZmVAAT3-OE arabidopsis seedlings

Supplementary dataset 1. Coding sequences and functional domains of ZmAAP4 and ZmVAAT3

Coding sequences of two amino acid transporters (the sequence from the start codon "ATG" to the stop codon "TGA" or "TAG" were subcloned into the overexpression vector for gene overexpression) and illustration of their functional domains (Tusnády and Simon, 1998; 2001).

ZmAAP4 (GRMZM2G110195_T01):

ATGGCGGAGAACAACGTCGTGGCCACGTACTACTACCCGACGGCAGCGCC GGCGGCCATGGAGGTCTGCGGCGCGGAGCTCGGCCAGGGCAAGCCCGAC AAGTGCTTCGACGACGATGGCCGCCCCAAGCGCAATGGGACGATGTGGAC GGCGAGCGCGCACATCATCACGGCGGTGATCGGCTCCGGGGTGCTCTCGC TGGGGTGGGCCATCGCGCAGCTCGGCTGGGTGGCCGGACCCGTCGTCATG CTGCTCTTCTCGCTCGTCACCTACTACACCTCGTCGCTGCTCGCAGACTGC TACCGCTCCGGCGACCCCAGCACCGGCAAGCGGAACTACACCTACATGGA CGCCGTCAACGCGAACCTCAGTGGCATCAAGGTCCAGATCTGCGGGTTCC TGCAGTACGCCAACATCGTGGGCGTGGCCATCGGCTACACCATCGCTGCC TCCATTAGCATGCTCGCGATCAGGAGGGCCAACTGCTTCCACCAGAAGGG ACACGGCAACCCCTGCAAGATCTCCAGCACGCCCTACATGATCATCTTCG GCGTGGCGGAGATCTTCTTCTCGCAGATCCCGGACTTCGACCAGATCTCCT GGCTCTCCATCCTCGCCGCCGTCATGTCCTTCACCTACTCCTCCATTGGGC TCGGCCTGGGCGTCGTCCAAGTCATCGCGAACAGAGGCGTGCAGGGCAGC CTGACCGGCATCACCATCGGCGTGGTGACCCCGATGGACAAGGTGTGGCG CAGCCTCCAGGCGTTCGGCGACGTCGCCTTCGCCTACTCCTCAT CCTGATCGAGATCCAGGACACCATCCGGGCGCCGCCGCCGTCGGAGTCGA CGGTGATGAAGCGCGCCACGGTGGTGAGCGTGGCGGTCACCACGCTCTTC TACATGCTGTGCGGCTGCATGGGGGTACGCGGCGTTCGGCGACGGCGCGCC CGGGAACCTCCTCACGGGCTTCGGCTTCTACGAGCCCTTCTGGCTCCTGGA CGTGGCCAACGCCGCCATCGTGGTCCACCTGGTCGGCGCCTACCAGGTCT ACTGCCAGCCGCTGTTCGCCTTCGTGGAGAAGTGGGCCGCGCAGCGGTGG GGCGAGCCGGCGGCGGTGCTGCAAGGTGAACCTGTTCCGGGCGACGTGGC GGACGGCGTTCGTCGTGGCCACGACGGTCGTGTCCATGCTGCCCTTCT TCAACGACGTGGTGGGCTTCCTGGGCGCGCTCGGCTTCTGGCCGCTCACC GTCTACTTCCCCGTCGAGATGTACGTGGTGCAGAAGAAGGTGCCGCGGTG GAGCTCCCGGTGGGTGTGCCTGCAGATGCTCAGCCTCGGCTGCCTCGTCAT CTCCATCGCCGCCGCAGCCGGGTCCATCGCCGGCATCGCGTCCGACCTCA AAGTCTACCGCCCGTTCAAGTCCTACTGA

Illustration of 12 transmembrane domains of ZmAAP4. Locations of transmembrane helices (from left to right): 51-67, 74-90, 139-155, 174-190, 199-223, 230-246, 255-271, 290-309, 336-360, 403-419, 424-440, 459-483.

Cytoplasm

ZmVAAT3 (GRMZM2G080843_T01):

TGCCGGAGGAGGAGGACGGAGACATCGAGGACGTCCCACCGCCGCCGCT GCTAGGCAGGAACTTCGGCAGCGAGGACGAGGACGAGGACGAGGCGGGC TCGTTGAACTCCCAGTCCCAGTGGTGGCCGCGGAGCTTCCGGGAAGCGAC TGACACCTATACCATTGCCGCGCCCCCGGGCCTCCGTCACCTCGTCGG TGACTGCAATGGCCTGGGCTCTGACCTGAAGCTGCCTCTTCTGTCGGACAA GCTAGATGGGAGGCAAGATTCATCCAACAACTTGCTGCCAGTAGCAGACC CCTTCGGTTCAGTGCTAAGCGACGGGGAGATTCTCAGATAGAGTGCAACAA GCCCCAACCACTCCAGGATGCAATCTGACGCAAACCGTGTTCAATGGGGT CAACGTGCTTGCTGGCATTGGCATTTTCTCTGCTCCATACACGATTCGTGA GGCCGGATGGGCCAGCCTTGTGGTTCTGGCTTTTTTCGCTGTGGTGTGCTG CTACACTGGAGTTCTTCTAAAGTACTGCTTTGAGAGCAAAGATGGTGTCA AAACTTTCCCAGACATTGGGGAGCTTGCCTTTGGAAGGATCGGCCGGTTT CTCATTTCTATAGTTCTGTACACCGAGCTCTATTCCTTTTGTGTGGAGTTCG TTATTCTGGAAGGTGATAACCTGGCATCAATTTTCACGAGCACCACTTTCG ATTGGAATGGGATTCATGCCGATGGCAGACATTTCTTTGGGATTCTATTTG CTCTTGTTGTCTTACCCAGCGTGTGGGTTGCGAGATCTTCGAGTAATATCTT ACCTTTCAGTGGGTGGTGTGTTTGCAACTCTTCTGGTTTTCCTATCTGTTGG TGTAGTTGGTGCTACTGGCAACGTAGGGTTCCACTTGGCAGGGAAAGCAG TGAAGTGGGATGGTATACCATTTGCAATTGGCATTTATGGTTTTTGCTACG CTGGACACTCAGTGTTTCCAAATATCTATCAGTCAATGTCCGATCGCACCA AATTCAACAAGGCACTCTACATATGTTTTGCAATATGCACGACAATTTATG GCGCTATAGCTGTTATTGGCTACCTCATGTTTGGAGATAAGACTCTCTCAC AAATAACTTTGAATCTTCCGAAAGATTCATTTGTGGCAAAAGTTGCACTGG GGACCACGGTGATCATTCCTTTCACAAAATATTCTTTGGTGATAAACCCAT TGGCTCGGAGTATAGAAGAGTTGCGTCCAGAAGGGTTTCTAACCGATAGA CTCTTCGCTGTTATGCTGCGTACTGCCATTGTTGCATCAACTCTATGTGTTG CCTTTCTCCTGCCATTCTTTGGTCTTGTGATGGCTCTCATTGGGTCTCTTCT CAGTATACTTGTGGCGCTCATAATGCCTGCCTGTGCTTCCTGAAGATCGC TCGGAACAAAGCGACGCGCTTGCAGGTCATCGCAAGCGTCGCGACCGTGG TGCTGGGCTCCGTCTGCGCAGTTCTTGGGACGTACAACTCTATCGCCAAGA TAGCCGAAAGCTACTAG

Illustration of 11 transmembrane domains of ZmVAAT3. Locations of transmembrane helices (from left to right): 146-165, 170-190, 217-237, 262-278, 287-306, 327-346, 359-381, 402-422, 439-459, 464-487, 500-522.

References:

Tusnady GE, Simon I. 1998. Principles governing amino acid composition of integral membrane proteins: application to topology prediction. *Journal of Molecular Biology* **283**, 489-506.

Tusnady GE, Simon I. 2001. The HMMTOP transmembrane topology prediction server. *Bioinformatics* **17**, 849-850.