Supplemental figures and tables

Figure S1. Schematic presentation of the performed experiment

Total soluble proteomes were isolated from dry seeds at two physiological states; afterripened (AR) and aged and separated by 2D PAGE. Comparisons were made between the mentioned physiological states within the genotypes (indicated by the solid arrows); and between genotypes Ler and near-isogenic lines; NILGAAS1, NILGAAS2 and NILGAAS5 at the AR state (indicated by the dashed arrows).

Figure S2. Seed longevity of T-DNA knock-out mutants after artificial aging

Seed longevity presented as germination (%) of T-DNA knock-out mutants of candidate genes was measured after 8 days of artificial aging treatment. Standard errors are calculated on four biological replicates. No significant differences between mutants and Col wild type were identified ($P \le 0.05$).

Figure S3. Schematic representation of energy metabolism related pathways affected during seed storage

Glycolysis, oxidative pentose phosphate (OPP), fermentation, tricarboxylic acid cycle (TCA), glyoxylate, and electron transport chain (ETC) pathways are shown. Identified indicated back box. UGP, UDP-1 GLUCOSE enzymes are in URIDYLYLTRANSFERASE; GAPC, GLYCERALDEHYDE3-P dehydrogenase C; TKL, TRANSKETOLASE; PDC, PYRUVATE DECARBOXYLASE; MDH, MALATE DEHYDROGENASE; ME, NADP-DEPENDENT MALIC ENZYME; ATPS, ATP SYNTHASE β chain; Fru6P, Fructose 6-phosphate; Glu6P, Glucose 6-phosphate; G3P, Glyceraldehyde 3-phosphate; PEP, Phosphoenolpyruvate; Rib5P, Ribulose 5phosphate; OAA, Oxaloacetate.

Table S1. The T-DNA knock-out lines of the selected candidate genes

Details of the T-DNA knock-out lines that are tested for their role in seed longevity. For each gene the Gene ID and acronym, the T-DNA line code and the primer (left and right) information for confirming the insertion are presented in the knock-out. Homozygous T-DNA insertion lines were isolated for genes in bold.

Gene ID	Annetation	Acron		Incontion	Primer				
	Annotation	Acronym		Inseluon	Forward	Reverse			
AT3G52880		MDHAR1	SALK_034893C	Exon	TTAGGTGGCTCCATATGAAOG	ACCCCAACTATCACAATGTCG			
		MDHAR2	SALK_145224C	Exon	CTGAATTOCACTCTACGACTGG	ACACAGACOGATGCATTCTTC			
AT3G15670	Late embryogeneis abundant protein	LEA76	SALK_052297.14.55	1000-Promotor	GGTCTCAAAAOGCTCAAAAATG	ACCATOGOGACATTTGTAGTG			
AT3G03250	UTP:glucose-1-phosphate uridylytransferase 1	UGP1	SALK_100183C	Exon	ATCATTICATGGATGCTTTGC	AAOCAGACATCAOCAGACAOC			
AT5G17310	UTP:glucose-1-phosphate uridylytransferase 2	UGP2	SALK_0159232550.	Exon	TCTTTGCTCCTTGCATGAAAC	GATTTCAAGTTTAGTCCCCCCC			
AT5G54960	Pyruvate decarboxylase 2	PDC21	SAIL_660_005	Exon	TOCTOGTGATTTCAAOCTGAC	CATGGCTTGAGCATAGCCTAG			
		PDC22	SALK_009521C.	Exon	TTCAAGTTCAACCATATGGGC	TCACCAAGCTTAACCAAATOG			
AT1G65980	Thioredoxin-dependent peroxidase1	TPX1	SALK_089621.55.70	300-UTR3	CTGATTTCTTCGTGAGCAAGC	AAGCATGGGGAAAAACATACC			
AT1G18080	Receptorforactivated kinase1	RACK1A	SALK_009406C		ProvidedbyMagdalenaGamm				
AT2G15430	RNA polymerase II		SALK_0081283020.	Exon	ATGGATOCAGTCACCAGACAG	OGTITIATTITTOGTTACGAGOG			
AT5G28840	GDP-D-mannose 3',5'epimerase		SALK_01841354.75	Exon	TTTTTOGGATCATCTOGAGTC	TOGATGAGTGTGTTGAAGGTG			
AT5G28840	GDP-D-mannose 3,5 epimerase	GME	SALK_15020840.70	Exon	TCACOGTGAGTGATCOCTAAC	TECTTEGATCAACTTAGGTEG			

Table S2. Protein spots that show an overlapping abundance pattern in after-ripened seeds of NILGAAS1 and NILGAAS2 in comparison with that of Ler

The table displays protein spots based on the seven comparisons. Spot ID, the gene corresponding to the protein underlying the spot, molecular weight (MW in kD) and the theoretical (Th) and experimental (Exp) isoelectric point (pl), are presented respectively. Furthermore the relative abundance (fold change) of the spots in both types of comparisons (Fig. 1; physiological state and genotype) is indicated. Positive fold changes indicate higher abundances, and negative lower abundances. Fold changes in bold indicate the is statistically significant changes. N*G1* stands for NIL*GAAS1*, N*G2* for NIL*GAAS2* and N*G5* for NIL*GAAS5*. Spots that were identified based on comparison to the reference protein map (http://www.seed-proteome.com) are labelled with ^R. The n.i.. indicates not identified.

	Gene	Protein	MW (kD)		pl	Relative abundance (fold change)							
Spot ID				Exp	Th	Ехр	Physiological state:			Geno	Genotype AR:		
			Th				Aged vs. AR			NIL v	NIL vs. Ler		
							Ler	NG1	NG2	NG5	NG1	NG2	NG5
ID0678	n.i.	n.i.	n.i	51.13	n.i	6.84	1.4	-1.9	-2.1	1.3	-1.9	-2.1	1.3
elD0179	AT4G28520	Cruciferin C	58.24	27.37	6.99	5.71	1.3	1.8	1.5	1.2	1.8	1.5	1.2
	AT1G03880	Cruciferin B	50.56		7.0								
	AT1G03890	Cupin family protein	49.67		5.45								
	AT5G07190	Arabidopsis thaliana seed gene 3	23.08		6.74								
ID0807	AT4G09670	Oxidoreductase family protein	39.56	41.25	5.69	5.69	1.1	1.6	1.6	1.5	1.6	1.6	1.5
elD0141 ^R	AT5G44120	Cruciferin A	52.59	14.51	7.88	5.86	2.5	1.5	1.7	1.6	1.5	1.7	1.6

Table S3. The nomenclature of seed storage proteins

Single, double and triple knock-outs lines for cruciferins and RNAi line for napins obtained from Withana-Gamage *et al.* (2013).

Line	Acronym	Knock-out gene	Protein content
Col	Col	-	CRUA, CRUB, CRUC and NAPINs
Single	aBC	AT5G44120	CRUB, CRUC and NAPINs
	AbC	AT1G03880	CRUA, CRUC and NAPINs
	ABc	AT4G28520	CRUA, CRUB and NAPINs
Double	abC	AT5G44120 and AT1G03880	CRUC and NAPINs
	a B c	AT5G44120 and AT4G28520	CRUB and NAPINs
	Abc	AT1G03880 and AT4G28520	CRUA and NAPINs
Triple	abc	AT5G44120, AT1G03880 and AT4G28520	CRU- and NAPINs
RNAi	RNAi Napin	Napin gene family (5 members)	CRUs