Supplemental Information

Heterogeneity of epigenetic changes at ischemia/reperfusion- and endotoxin-induced AKI genes.

¹Daniel Mar, ^{1,2}Sina A. Gharib, ³Richard A. Zager, ³Ali Johnson, ¹Oleg Denisenko, ¹Karol Bomsztyk,

¹UW Medicine Lake Union, ²Computational Medicine Core, Center for Lung Biology, University of Washington, Seattle, WA 98109, USA. ³the Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA.

Running title: Epigenetic portraits of AKI genes

Address for correspondence: Karol Bomsztyk UW Medicine at Lake Union Box 358050 University of Washington, Seattle, WA 98109 USA Tel. (206) 616-7949 Fax. (206) 616-8591 e-mail: <u>karolb@u.washington.edu</u>

Table S1-PCR primers RT-qP	CR							
Primer	Sequence				Primer	Sequence		
Agt FWD	GCGCTGACCGAGAATAAATG				Kim1 FWD	TTGCCTTCCGTGTCTCTAAG		
Agt REV	GTCACCCC/	AGTATCCAA	ACA		Kim1 REV	AGATGTTG	TCTTCAGCTCGG	
Angpt1 FWD	AGTTGGAACAGCCCATTGTA			Klotho FWD	TTTGTCATG	GGTGGTAGAGG		
Angpt1 REV	TGAAGGCCTACGAACACTTT			Klotho REV	TCAGATAC	CATTCACCCTGC		
Angpt2 FWD	AAGAATGTTCCGTGGGAGTT			Kmt1b FWD	ACTTCTGG	GGATTAGATGCG		
Angpt2 REV	TGCTTAGA	GGAATGTGG	STCC		Kmt1b REV	TTAGAACTO	CCCAGACCCAGA	
Bax FWD	CATGGCAGACAGTGACCATC				Kmt1c FWD	CATCAACACCTGAGGACTCT		
Bax REV	GAAAAATG	GCCTTTCCCC	STTC		Kmt1c REV	TTACTGGGGTCTCTGATGGA		
Bcix FWD	GCTGGTGC	GCTGGTGCCCAGAGACTGAC			Lamc1 FWD	GGAACCTTCCCACACGGGTC		
Bclx REV	GCCCCTCA	GCCCCTCAGAAGCCAGAACC			Lamc1 REV	CGGTGCTGATGCCCTCAAGT		
Bmp7 FWD	GTCTCAGGAAGAGCTAGTGG				Ldir FWD	GTCCTGCTGTGGAGGAACTG		
Bmp7 REV	TCGACGACAGCTCTAATGTC				Ldlr REV	CAGGCTGACCATCTGTCTTG		
Clu FWD	ACCCCTAGAGAACTCCACAT				L-FABP FWD	CAAGCTGGAAGGTGACAATAA		
Clu REV	TGCAGGCATTAGTGTACAGA				L-FABP REV	GTGTCTCCATTGAGTTCAGTC		
Cox2 FWD	TGCCTCCCA	TGCCTCCCACTCCAGACTAGA			Mcp1 FWD	TTGAATGTGAAGTTGACCCG		
Cox2 REV	CAGCTCAG	CAGCTCAGTTGAACGCCTTTT			Mcp1 REV	TTAAGGCA	TCACAGTCCGAG	
Cst3 FWD	AAGGGCTG	AGTCTAGA	AGGA		Nphs1 FWD	CCTATGAC	CTTCGCTGGCCT	
Cst3 REV	CCTTCTGCG	CCTTCTGCGAGATGAAACAC			Nphs1 REV AGGCTCCCCAGCATCCATGT		CAGCATCCATGT	
Ctgf FWD	TGCTGTGC	AGGTGATAA	AGC		Nphs2 FWD	CAGAGGCT	TAGGTGCTCCTGGATGA	
Ctgf REV	CCACCCCA	CCACCCCAAACCAGTCATAA			Nphs2 REV TCAT		TCAGTCTTGCCCCTCTG	
Egr1 FWD	AACAGCCC	AACAGCCCTTTCACTTACCA			Netrin1 FWD	CCCTTTGCT	TACCATTTGGG	
Egr1 REV	CTTGGACA	TGGCTGTTTC	CAG		Netrin1 REV	CACATACC	TTTGTGCCACTG	
Ezh2 FWD	TGAAGTAT	TGAAGTATGTGGGCATCGAA			Ngal FWD	AGATGCTC	CTTGGTATGGTG	
Ezh2 REV	GAAGCTAA	GGCAGCTG	ттс		Ngal REV	CTGTCTGCCACTCCATCTTT		
Fit1 FWD	GACATGGG	GACATGGGAAGACAGGGTAG			p53 FWD CTCTGAGTAGTGGTTCCTGG		AGTGGTTCCTGG	
Fit1 REV	AGCCATTT	AGCCATTTTAGAGACCCAGG			p53 REV	TGGCTGGA	TAGAATTTCGCT	
Fsp1 FWD	GGAGGCCC	GGAGGCCCTGGATGTAATTGT			Pai1 FWD	TGAGAGAG	GGCAAAGTGGTT	
Fsp1 REV	TGTCACCCT	ICTTTGCCTG	AGT		Pai1 REV	ATACAGCA	GCCGGAAATGAC	
Gapdh FWD	AACTTTGGCATTGTGGAAGG			Pecam1 FWD	TGCCTTGTT	CATGTTGGGTA		
Gapdh REV	AGTGGATGCAGGGATGATGT			Pecam1 REV	TCTCCTGGA	ACCTCCTTTCA		
Hmgcr FWD	TGTTCAAGGAGCATGCAAAG			Rage FWD	GATGCAAA	GGCAATCTCACTCCTGCATC		
Hmgcr REV	CTTACCTGTTGTGAACCATGTG			Rage REV	CCTGGTATO	GGTGGGAGGCATAG		
Hmox1 FWD	TCTTGCCTG	ТСТТӨССТӨӨСТСТСТТСТС			Sema3a FWD	GCGGTGGCTTATGTACTACT		
Hmox1 REV	GGCTGCTGGTTTCAAAGTTC			Sema3a REV	GGAACAATTTACGACCTGGC			
Hpx FWD	GGGCCCAATTTGTACTGCTA			Spp1 FWD	CATGAAGA	GCGGTGAGTCTA		
Hpx REV	CCAAGGAT	CCAAGGATGCTGTTCACCTT			Spp1 REV	TTGTTGTCC	TGATCAGAGGG	
Icam1 FWD	CGAGGGTTTCTCTACTGGTC				Tek FWD	FWD AGGAAGAAAAGCGAGGGAAA		
Icam1 REV	TGCCAGTCCACATAGTGTTT				Tek REV	CTGCTACTTGG		
lfng FWD	GCTTTAACAGCAGGCCAGAC				Tgfb1 FWD	GCAGTGGC	TGAACCAAGGA	
Ifng REV	GGAAGCAC	GGAAGCACCAGGTGTCAAGT			Tgfb1 REV	GCAGTGAG	CGCTGAATCGA	
lgfbp7 FWD	AATCCATGAGCCTCTGTAGC				Timp2 FWD	AGAAACGO	GTTAAGGACTCCC	
lgfbp7 REV	AAGAGAAG	GTGTGTCAG	GCAA		Timp2 REV	TGTCCTCCC	AGTCTGTCTTA	
II10 FWD	CCAGGGAGATCCTTTGATGA				Timp3 FWD CAATCAGTCAAAGGCAGCAA		CAAAGGCAGCAA	
II10 REV	AACTGGCCACAGTTTTCAGG				Timp3 REV	TCCCTCTGA	CATGCACACAT	
II18 FWD	GTGTTCCAGGACACAACAAG				Tir2 FWD	TGCTTTCCT	GCTGGAGATTT	
II18 REV	CTTCCTTTTGGCAAGCAAGA				Tir2 REV	TGTAACGC	AACAGCTTCAGG	
II6 FWD	GTGGCTAAGGACCAAGACCA				TIr4 FWD	GCATGGCT	TACACCACCTCT	
II6 REV	ACCACAGTGAGGAATGTCCA				TIr4 REV	GTCTCCACA	AGCCACCAGATT	
Junb FWD	GCCTTTCTATCACGACGACT				Tnf FWD	CGCTACAT	CACTGAACCTCT	
Junb REV	AAGGTGGGTTTCAGGAGTTT			Tnf REV	TTCTCTCAA	TGACCCGTAGG		
Kdm6a FWD	AGTTCTGCACCACTGCTATT			Vcam1 FWD	TGCAAGGA	GCTAACCAGAAA		
Kdm6a REV	TTGACACTCCACACTTGGAA				Vcam1 REV	ATCATGGG	ACCATTCCAGTC	
Kdm6b FWD	ACTITCTTGGACCAGTACCC				Vegfa FWD	GAGAGAG	GAGAGAGGCCGAAGTCCTTT	
Kdm6b REV	TTCAGTTCCCACTTCTTCCC				Vegfa REV	TTGGAACC	GGCATCTTTATC	
Kdr FWD	CGCTCACCTCCTGTTTAAATG				im FWD	CGCCATCA	ACACTGAGTTCAA	

TableS2. Primers ChIP-qPCR

Primer	Sequence	
Icam1 FWD	CTACCTGCACTTTGCCCT	
Icam1 REV	GGATCACAACGGTGACCA	
Kim1 FWD	TGGAGATTCCTGGATGGTTT	
Kim1 REV	TAGAAGCTTACCTGGTTTAACTTG	
Ngal FWD	ACTCAGAACTTGATCCCTGC	
Ngal REV	CCTTCAGGGTCCTACCTGAT	
Tnf FWD	AGTGCCTCTTCTGCCAGTTC	
Tnf REV	GCAGGTTCTGTCCCTTTCAC	

Figure	Antibody	Catalog No	Source	Manufacturer
3	Pol II CTD (4H8)	sc-47701	Mouse monoclonal	Santa Cruz
S2	Pol II CTD pSer2/pSer5	PA5-17563	Rabbit polyclonal	ThermoPierce
S3	Pol II CTD (8WG18)	MMS-126R	Mouse monoclonal	Covance
S12	H3K9m2	ab1220	Mouse monoclonal	ABCAM
S11	H3K27m3 (G.299.10)	MA511198	Mouse monoclonal	ThermoPierce
S15	H2BK120ub1	39624	Mouse monoclonal	Active Motif
S14	H2AK119ub1 (D27C4)	8240	Rabbit monoclonal	Cell Signaling
S5	H3K27Ac	SAB5100010	Rabbit polyclonal	Sigma
S13	macroH2A	07-219	Rabbit polyclonal	UPSTATE
S4	H3K18Ac	PA5-17801	Rabbit polyclonal	ThermoPierce
4	Н3К9Ас	701269	Mouse monoclonal	ThermoPierce
S7	H3K4m2	07-030	Rabbit polyclonal	Millipore
5	H3K4m3	PA5-17420	Rabbit polyclonal	ThermoPierce
S10	H3K79m2	OAAH00059	Rabbit polyclonal	Aviva
S9	H3K36m2	OAAH00061	Rabbit polyclonal	Aviva
6	H3K36m3	OAAH00062	Rabbit polyclonal	Aviva
S6	H4K5/8/12/16Ac	06-866	Rabbit serum	UPSTATE
S8	H3pSer10	701258	Rabbit monoclonal	ThermoPierce
7	H4pSer1	PA5-27064	Rabbit polyclonal	ThermoPierce

Table S3. Antibodies used in Matix ChIP

Fig.S1. Ischemia-reperfusion and endotoxin acute renal injury model and data analysis. A. Model. Mice were anesthetized and subjected to a midline abdominal incision under sterile conditions and, after 30 min of unilateral renal artery occlusion, the clamp was released (ischemia/reperfusion, or I/R). Either 1, 24 or 72 hours later, I/R injury mice received a tail vein injection of either lipopolysaccharide (LPS) or saline [1]. Two hours after these injections, mice were anesthetized and kidneys were harvested and rapidly frozen for RT-PCR and Matrix ChIP analysis [2,3]. Thus, the timing of harvesting the kidneys relative to I/R injury was 3, 26 and 76 hrs, and 2 hrs post either LPS or saline treatment (Methods). B. GraphGrid analysis. Solid circles positioned at line intersections designate comparison between a given pair of means (one bar graph vs. another bar graph). The bar graph above the circle represents one of the paired means. The second of the paired means is found by tracing left along

horizontal line from the circle all the way to farthest left angle corner where the vertical line points to the bar graph for the paired comparison. The graph illustrates bar (means + SEM). Five different paired statistical comparisons are done as shown with the numbered circles. **C. Statistical analysis** is done using Bonferroni correction. Statistical differences between two means (p value) are shown by the size of the solid circle. : p<0.05 by small circle, p<0.01 by large circle, and no circle indicating the differences are not statistically significant.

Pol II CTD (pSer2/pSer5)

Fig.S2. Analysis of phosphorylated serine 2 and 5 RNA polymerase II CTD (Pol II CTD pSer2/pSer5)) at Tnf, Ngal, Kim-1 and Icam-1 genes following unilateral kidney I/R and LPS injection. Sheared cross-linked renal cortex chromatin from mice were assayed using a polyclonal antibody that detects phosphorylated CTD on serine 2 and 5. ChIP DNA were analyzed at Tnf, Ngal, Kim-1 and Icam-1 genes in real-time PCR. Data represent mean ± SEM (6 animals from each group), expressed as fraction of input.

Polll CTD (8WG16)

Fig.S3. Analysis of unphosphorylated RNA polymerase II CTD (Pol II CTD) at Tnf, Ngal, Kim-1 and Icam-1 genes following unilateral kidney I/R and LPS injection. Sheared cross-linked renal cortex chromatin from mice were assayed using a monoclonal antibody that detects unphosphorylated CTD (8WG16). ChIP DNA were analyzed at Tnf, Ngal, Kim-1 and Icam-1 genes in real-time PCR. Data represent mean ± SEM (6 animals from each group), expressed as fraction of input.

Fig.S4. Permissive histone H3 lysine 18 acetylation (H3K18Ac) at Tnf, Ngal, Kim-1 and Icam-1 genes following unilateral kidney I/R and LPS injection. Sheared cross-linked renal cortex chromatin from mice were assayed using polyclonal antibody to H3K18Ac antibody. Data represent mean ± SEM (6 animals from each group), expressed as fraction of input.

Fig.S5. Permissive histone H3 lysine 27 acetylation (H3K27Ac) at Tnf, Ngal, Kim-1 and Icam-1 genes following unilateral kidney I/R and LPS injection. Sheared cross-linked renal cortex chromatin from mice were assayed using monoclonal antibody to H3K27Ac antibody. Data represent mean ± SEM (6 animals from each group), expressed as fraction of input.

Fig.S6. Permissive histone H4 lysine 5,8,12,16Ac acetylation (H4KAc) at Tnf, Ngal, Kim-1 and Icam-1 genes following unilateral kidney I/R and LPS injection. Sheared cross-linked renal cortex chromatin from mice were assayed using rabbit antiserum to H4K5/8/12,16Ac. Data represent mean ± SEM (6 animals from each group), expressed as fraction of input.

Fig.S7. Permissive histone H3 lysine 4 di-methylation (H3K4m2) at Tnf, Kim-1, Ngal, and Icam-1 genes following unilateral kidney I/R and LPS injection. Sheared cross-linked renal cortex chromatin from mice were assayed using polyclonal antibody to H3K4m2. Data represent mean ± SEM (6 animals from each group), expressed as fraction of input.

H3K4m2

H3pSer10

Fig.S8. Transcription permissive histone H3 serine10 phosphorylation (H3pSer10) at Tnf, Kim-1, Ngal, and Icam-1 genes following unilateral kidney I/R and LPS injection. Sheared cross-linked renal cortex chromatin from mice were assayed using antibody to H3pSer10. Data represent mean ± SEM (6 animals from each group), expressed as fraction of input.

Fig.S9. Transcription elongation histone H3 lysine 36 di-methylation (H4K36m2) at Tnf, Kim-1, Ngal, and Icam-1 genes following unilateral kidney I/R and LPS injection. Sheared cross-linked renal cortex chromatin from mice were assayed using polyclonal antibody to H3K36m2. Data represent mean ± SEM (6 animals from each group), expressed as fraction of input.

H3K36m2

Fig.S10. Transcription elongation histone H3 lysine 79 di-methylation (H4K79m2) at Tnf, Kim-1, Ngal, and Icam-1 genes following unilateral kidney I/R and LPS injection. Sheared cross-linked renal cortex chromatin from mice were assayed using polyclonal antibody to H3K79m2. Data represent mean ± SEM (6 animals from each group), expressed as fraction of input.

H3K27m3

Fig.S11. Transcription repressive histone H3 lysine 27 tri-methylation (H3K27m3) at Tnf, Ngal, Kim-1, and Icam-1 genes following unilateral kidney I/R and LPS injection. Sheared cross-linked renal cortex chromatin from mice were assayed using monoclonal antibody to H3K27m3. Data represent mean ± SEM (6 animals from each group), expressed as fraction of input.

Post I/R: 3hrs 26hrs 74hrs 0.080 0.030 0.060 0.060 0.020 0.040 Tnf 0.040 0.010 0.020 0.020 0.000 0.000 0.000 Matrix ChIP (Fraction of input) 0.060 0.020 0.040 0.015 0.030 0.040 Ngal 0.010 0.020 0.020 0.005 0.010 0.000 0.000 0.000 0.200 0.100 0.150 Kim-1 0.150 0.100 0.100 0.050 0.050 0.050 0.000 0.000 0.000 0.050 0.015 0.020 Icam-1 0.040 0.015 0.010 0.030 0.010 0.020 0.005 0.005 0.010 0.000 0.000 0.000 LPS ľR КR LPS ΪR LPS 8 I/R+LPS 8 I/R+LPS <u>8</u> I/R+LPS

Fig.S12. Transcription repressive histone H3 lysine 9 di-methylation (H3K9m2) at Tnf, Ngal, Kim-1, and Icam-1 genes following unilateral kidney I/R and LPS injection. Sheared cross-linked renal cortex chromatin from mice were assayed using monoclonal antibody to H3K9m2. Data represent mean ± SEM (6 animals from each group), expressed as fraction of input.

H3K9m2

macroH2A.1

Fig.S13. Transcription repressive variant histone macro-H2A.1 (macroH2A.1) at Tnf, Ngal, Kim-1, and Icam-1 genes following unilateral kidney I/R and LPS injection. Sheared cross-linked renal cortex chromatin from mice were assayed using polyclonal antibody to macroH2A.1. Data represent mean ± SEM (6 animals from each group), expressed as fraction of input.

H2AK119ub1

Fig.S14. Transcription repressive histone H2A lysine 119 mono- ubiquitination (H2AK119ub1) at Tnf, Ngal, Kim-1, and Icam-1 genes following unilateral kidney I/R and LPS injection. Sheared cross-linked renal cortex chromatin from mice were assayed using rabbit monoclonal antibody to H2AK119ub1. Data represent mean ± SEM (6 animals from each group), expressed as fraction of input.

H2BK120ub1

Fig.S15. Transcription repressive histone H2B lysine 120 mono- ubiquitination (H2BK120ub1) at Tnf, Ngal, Kim-1, and Icam-1 genes following unilateral kidney I/R and LPS injection. Sheared cross-linked renal cortex chromatin from mice were assayed using mouse monoclonal antibody to H2BK120ub1. Data represent mean ± SEM (6 animals from each group), expressed as fraction of input.

Fig.S16 Integrated transcriptional and epigenetic analysis of Tnf, Kim-1, Ngal, and Icam-1 portraits following unilateral kidney injury. Log-transformed values for mRNA and Pol II levels, as well as several epigenetic modifications during temporal progression of AKI due to I/R, LPS and I/R+LPS are depicted as a heatmap. While there is a general increase in permissive marks and reduction of repressive marks in a time-dependent manner, note the heterogeneous response pattern of individual AKI-induced genes.