Supplementary Figure 1.

Supplementary Figure 1. DMs have comparatively few copy number alterations and an overall copy number spectrum most similar to chronically sun damaged cutaneous melanomas. A-E. Gains (red) and losses (blue) across melanoma subtypes determined as described (see methods). To avoid obscuring copy number changes, only melanomas with limited stromal cell contamination were included. Note that DMs typically have fewer copy number alterations than other subtypes of melanomas. Copy number data from non-desmoplastic melanomas was previously published(39). In panels B-E, the lower plot notes regions of significant difference between DMs and each subtype – note that DMs were most similar to cutaneous CSD melanomas. In these panels, the green, blue, and red horizontal dotted lines correspond to q values of 0.1, 0.05, and 0.01 respectively.

Supplementary Figure 2.

Supplementary Figure 2. Focal copy number alterations striking *EGFR*, *MET*, *CDK4*, *MDM2*, *NF1*, and *SOS2*. In all panels, a heatmap and scatterplots are shown. Heatmaps depict chromosomal gains (red) and losses (blue) striking select genes (labeled). All genes in the minimal copy number alteration (CNA) are listed with the presumed driver colored red (oncogene) or blue (tumor suppressor). To the right of each heatmap is a scatterplot of the most minimal CNA with the location of all UCSC genes annotated. The y-axis notes the log10 ratios from copy number data with chromosomal position along the x-axis. **A.** Focal amplification of *EGFR* and *MET* on chromosome 7. **B.** Focal amplification of *CDK4* and *MDM2* on chromosome 12. **C.** Focal deletion of *NF1* on chromosome 17. **D.** Focal amplification of *SOS2* on chromosome 14.

Supplementary Figure 3.

Supplementary Figure 4.

Α. MDM2 IHC 100um

Amplified

Overexpressed

Negative Control

Wild Type DMs for Comparison

Amplified Overexpressed

Amplified Overexpressed

Negative Control

C. EGFR IHC 100um

. Overexpressed

12M

Supplementary Figure 4. Immunostaining validation of amplified oncogenes. MDM2, CDK4, EGFR, YAP1, MET, and CCND1 were amplified in subsets of desmoplastic melanomas (Fig S2-3), and select cases were immunostained as described. Examples of negative staining non-lesional tissue are shown for

D.

Amplified Overexpressed

Amplified Overexpressed

DM74

MET IHC 100um

Overexpressed

Amplified

comparison.

F. CCND1 IHC 100um

Overexpressed

Supplementary Figure 5.

A. p16 IHC 100um

B. p53 IHC 100um

Supplementary Figure 6.

	1,295,228	1,295,250	Сору	Legend
Sample	Status	Status	Number	W/T Mut 05% Confidence
DM1	Mut	Mut		
DIVITI DM2	Mut	WILL		WT Mut 90% Confidence
DM14	Mut	WT		
49M	Mut	WT		"WT" Wild Type
46M	Mut	WT		"Mut" – Mutant
40M	Wit	WUT		
35M	Mut	WT		"Amp" Amplified
Au1	Mut	WT		
19M	Mut	WT		
AU10 37M	WI	WI		85% (11/13) mutant at 95% confidence
DM95	WT	WT	Amp	
Au8	WT	Mut		
Au4	Mut	WT		
Au9	Mut	WT		-
Au3 71M	WI	Mut		-
12M	Mut	WT		85% (17/20) mutant at 90% confidence
DM16		WT		
11M	Mut			
53M	Mut	10/1	Amn	
DIVI55		VV I	Amp	
DM102			Anip	-
Au7				
Au5				4
DM77				-
DM51 DM58				-
DM6				
Au6				
DM94				-
DIVI8 DM101				5% (3/62) focal, high amplitude
DM34				amplification
DM28				
DM98				
DM59				-
DM/9				-
DM43				1
DM45				
DM17				4
DIVI96				1
DM65				1
DM36]
DM93				4
DM25				4
DM/4 DM42				1
DM31				1
DM18				4
DM48				4
DM26				1
DM29	<u> </u>			1
DM10]
DM12				4
DM49				J

Supplementary Figure 6. *TERT* **promoter mutation status.** Coverage over the *TERT* promoter was generally low. Samples are rank ordered by our ability to call mutations at the 228 and 250 *TERT* promoter mutational hotspots as described. 85% of "callable" samples had a *TERT* promoter mutation.

Supplementary Figure 7.

Supplementary Figure 7. Validation of NFKBIE hotspot mutations. All NFKBIE hotspot mutations from the discovery and validation cohorts were detected using at least two of the following assays: targeted sequencing, whole genome sequencing, Sanger sequencing, and amplicon sequencing (summarized in table S6). Supporting read summaries and Sanger sequencing chromatograms associated with each mutation.

Supplementary Figure 8.

Supplementary Figure 8. *NFKBIE* hotspot mutations striking both alleles. A-E. Five samples had two *NFKBIE* mutations at nearby genomic coordinates. IGV views of mutant and wildtype germline reads. The mutually exclusive mutant read pattern in each of these cases indicates that the mutations affect both alleles.

Supplementary Figure 9.

Supplementary Figure 9. *NFKBIE* hotspot mutations affecting one allele. IGV views of mutant and wildtype germline reads in samples with one *NFKBIE* mutation.

Supplementary Figure 10.

Supplementary Figure 10. The short isoform of *NFKBIE* is expressed in *NFKBIE*-mutant cell lines. The *NFKBIE* locus encodes two potential isoforms as described (Fig 4). **A**. RT-PCR primers were designed to detect the long isoform (primer set 1) or both isoforms (primer sets 2 and 3). *NFKBIE*-mutant (M257 and M375) and nonmutant (C0902) cell lines exclusively expressed the short isoform. **B-C.** The short and long isoforms should respectively yield proteins of 45kD or 62kD. Only one specific band at approximately 45kD was observed in NFKBIE mutant cell lines M257 and M375. **D**. Cell fractionation indicates that NFkB transcription factors and *NFKBIE* are cytoplasmic in *NFKBIE*-mutant cell lines as compared to A375. All cell lines were grown in full serum.

Supplementary Figure 11. Phospho-ERK staining is ubiquitous in desmoplastic melanoma. Phospho-ERK staining was strong in all (9/9) desmoplastic melanomas stained. Staining was heterogeneous for samples 12M and 35M.