Supporting Information

Natural small molecule FMHM inhibits lipopolysaccharide-induced inflammatory response by promoting TRAF6 degradation via K48-linked polyubiquitination

Ke-Wu Zeng¹, Li-Xi Liao¹, Hai-Ning Lv¹, Jiao-Fang Song², Qian Yu², Xin Dong¹, Jun Li³, Yong Jiang¹, Peng-Fei Tu^{1,*}

¹State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China ²Research Studio of Integration of Traditional and Western Medicine, First Hospital, Peking University, Beijing 100034, China ³Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China

Figure S2

IP HA IB K48-Ubi	
lgG	
IP HA IB HA IgG	
WCL IB HA	
MG132 (20µM)	+ +
FMHM(20µM)	- +
HA-TRAF6	+ +

IP HA IB Ubi Iç	gG
IP HA IB HA Ig	gG C C
WCL IB HA	
FMHM(20µM	M) - +
HA-TRAF	F6 + +

Figure legends

Supplement Figure S1. FMHM did not show cytotoxicity in RAW264.7 cells. (A) RAW264.7 cells were treated with FMHM (5, 10 and 20 μ M) for 24 h, and then MTT assay was done for viability assay. (B) RAW264.7 cells were treated with FMHM (5, 10 and 20 μ M) in the presence of LPS (1 μ g/mL) for 24 h, and then MTT assay was done for viability assay. All data are presented as means±S.D. from independent experiments performed in triplicate.

Supplement Figure S2. FMHM did not interfere LPS-binding to cell surface. RAW264.7 cells were treated with Alexa Fluor488 conjugate LPS ($5\mu g/mL$) with or without FMHM ($20\mu M$) for 1 h. Then mean fluorescence intensity of 10,000 cells for each sample was quantified by flow cytometry. All experiments were performed in triplicate.

Supplement Figure S3. (A) Ciclosporin A (CsA) increased the NO inhibitory effects of FMHM. RAW264.7 cells were treated with LPS (1 µg/mL) in the absence or presence of FMHM (20 µM) and CsA (5 µM) for 24 h, and then NO assay was performed. (B) RAW264.7 cells were treated with Biotin-FMHM (20 µM) and LPS (1 µg/mL) in the presence or the absence of CsA (5 µM). Then, immunofluorescence assay using anti-biotin antibody (red fluorescence, for FMHM positioning in cells) and DAPI (blue fluorescence, for nuclear positioning in cells) was performed (bar=50µm). All data are presented as means±S.D. from independent experiments performed in triplicate. ^{##}P< 0.01, relative to control group; ^{**}P< 0.01, relative to LPS group; ^{\$\$}P< 0.01, relative to FMHM group.

Supplement Figure S4. FMHM did not regulate non-canonical NF- κ B pathway. RAW264.7 cells were treated with LPS (1 µg/mL) in the absence or presence of FMHM (5, 10 and 20 µM) for 24 h, and then Western blotting assay was performed to detect NIK, RelB, TRAF2, TRAF3 and activated NF- κ B2 protein. All experiments were performed in triplicate.

Supplement Figure S5. FMHM did not regulate the expressions of TLR4 and adaptor proteins. RAW264.7 cells were treated with LPS (1 μ g/mL) in the absence or presence of FMHM (5, 10 and 20 μ M) for 24 h, and then Western blot assay was performed for detection of TLR4, MyD88, TAK2 and TAB2 protein expressions. All experiments were performed in triplicate.

Supplement Figure S6. RAW264.7 cells were transfected with HA-tagged TRAF6 plasmids for 72 h, and then treated with MG132 (20 μ M) in the presence or absence of FMHM (20 μ M) for 1 h. Co-IP assay was performed to detect K48-linked ubiquitination levels of TRAF6. All experiments were performed in triplicate.

Supplement Figure S7. RAW264.7 cells were transfected with HA-tagged TRAF6 plasmids for 72 h, and then treated with FMHM (20 μ M) for 1 h. Co-IP assay was performed to detect the overall ubiquitination levels of TRAF6. All experiments were performed in triplicate.

Supplement Figure S8. RAW264.7 cells were pretreated with Bafilomycin A1 (100 nM) for 4 h, and further treated with FMHM (20 μ M) in the absence or presence of

LPS (1 µg/mL) for 1 h. Western blotting assay was performed to detect TRAF6 protein. All data are presented as means±S.D. from independent experiments performed in triplicate. $^{\#}P$ < 0.01, relative to control group; $^{**}P$ < 0.01, relative to LPS group.

Primary antibody information

iNOS (No.#2982, CST company); COX-2 (No.#12282, CST company); GAPDH (No.#2118, CST company); K63-Ubi (No.#5621, CST company); K48-Ubi (No.#8081, CST company); Ubi (No.#3933, CST company); TLR4 (No.#14358, CST company); MyD88 (No.#4283, CST company); TAK1 (No.#5206, CST company); TAB2 (No.#3745, CST company); NF- κ B Non-canonical Pathway Antibody Sampler Kit #4888 (NIK, RelB, TRAF2, TRAF3 and NF- κ B2); NF- κ B Pathway Sampler Kit #9936 (p-IKK α/β , IKK β , p-I κ B, I κ B, p-NF- κ B, NF- κ B); HA (No.#3724, CST company); Myc (No.#2278, CST company); TRAF6 (No.EP591Y, Abcam company).