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1 Classification method

The classification procedure consisted of the following steps (Figure 1):

1. Segmentation of trajectories to overlapping segments of fixed length;

2. Computation of feature values for each segment;

3. Labelling of stereotypical segments for each segment class of interest;

4. Clustering and mapping of clusters to classes using the labelled data;

5. Evaluation of clustering performance. This is done by computing three quantities: the coverage,
or percentage of swimming paths covered by successfully classified segments, the percentage of
segments that could not be classified (because they belong either to a cluster with an insufficient
number of labels or with labels of multiple classes), and the cross-validation error (average
percentage of the test data that was assigned to a cluster of the wrong class).

6. Steps 3-5 are repeated until an acceptable clustering quality is found;

7. Computation of the distribution of behavioural classes for each trajectory;

Figure 1: Steps of the classification procedure

In the next sub-sections more details of some of the aspects of the classification method are presen-
ted.
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1.1 Details of the segmentation process

Trajectories were split into segments of length d, where segment i is defined as the set of points of
the recorded trajectory lying in the interval [li, li + d]. The segmentation process generates segments
that significantly overlap to reduce the classification variance due to unfavourable segmentations. For
the analysis performed here overlaps of 70% and 90% were adopted. The number of segments for a
trajectory of length L, segment length d, and overlap α is N =

⌈

(L/d− 1).(1− α)−1
⌉

, where ⌈..⌉ is
the ceiling function. Trajectories shorter than the segment length are mapped to a single segment.
The starting point of segment i, 1 ≤ i ≤ N , is li = d · (1− α)(i− 1).

1.2 Computation of features

Features of each segment were calculated as described in main text, Methods.

1.3 Labelling of segments

The labelling of segments was done iteractively, as described in the main text, Methods.

1.4 Two-stage clustering algorithm description

Experiments showed that the 2-stage clustering algorithm adopted here improves the clustering per-
formance considerably (Fig. 2). The algorithm is detailed in Algorithm 1. In the first step, the
algorithm clusters the data into the target number of clusters using only “cannot-link” types of con-
straints. Clusters are then mapped to label classes (how this mapping is done is discussed in the next
Section) and clusters which could not be unambiguously mapped to a class are sub-divided further
by another clustering step. It this second clustering step each cluster that could not be mapped to a
single class in the first step is split once more, this time, however, using both must-link and cannot-link
constraints; multiple target number of clusters (from 2 up to two times the number of different classes
in the original cluster) are also tried in succession. The first successful sub-partitioning, or the one
with the smallest target number of clusters, is then chosen (a partitioning is considered successful if
at least one of the sub-clusters could be mapped to a single class).
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Figure 2: A-B: Impact of the number of clusters on the clustering performance for a set of 29,476
segments (Classification 3 in Table 2 in the main text). A Percentage of classification errors (percentage
of labelled segments mapped to the wrong class); B Percentage of segments belonging to clusters that
could not be mapped unambiguously to a single class; Error bars represent the 95% CI of a ten-fold
cross validation over a set of 1,605 labels. Continuous lines: two-stage clustering. Dashed lines: single
stage clustering. The results show that the second clustering stage leads both to significantly less
classification errors and a smaller percentage of unclassified segments. Asterisks in the middle plot
mark the results when using the full set of labels. C Percentage of the full swimming paths that are
covered by at least one segment of a known class. The target number of clusters, Nclus, was chosen so
that the coverage value is as high as possible while still having a low number of classification errors.
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As Fig. 2 shows, the two-stage clustering shows significantly better results than a single clustering
stage. The two-stage algorithm also leads to less variance of the final results over different target
number of clusters.
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Data: feature vectors xi, 1 ≤ i ≤ N
labels {L, L2, ..., LN} with (Li = ∅ ∨ Li = {li1, ..., lini

})
target number of clusters k
maximum constraint distance dmax

Result: clusters {C1, C2, ... , Cl}, Ci = {ci1, ci2, ... , ci ni
}

1 ≤ cij ≤ N ; cij = index of jth element of ith cluster
cluster labels {L1, L2, ... ,Ll}
/* initialization */

M← ∅, C ← ∅; /* must/cannot-link constraints */

/* creation of constraints */

foreach {i, j} |Li 6= ∅ ∧ Lj 6= ∅ ∧ |xi − xj | < dmax do

if Li ∩ Lj 6= ∅ then

M←M ∪ {i, j}; /* create must-link constraint */

else

C ← C ∪ {i, j} ; /* create cannot-link constraint */

end

end

/* main algorithm */

cluster data into k clusters C1, C2, ..., Ck using constraints C
foreach cluster Cl do

if Cl = ∅ then
discard Cl and move to next cluster

end

map cluster Cl to label Ll

ml = |Ml|, Ml = (Ll1 ∩ Ll2 ∩ ... Lln |{l1, ..., ln} ∈ Cl);
/* number of distinct labels in Cl */

if ml ≥ 1 ∧ Ll = ∅ then

k′l ← max(ml, 2) ; /* number of sub-clusters */

1 cluster Cl into k′l sub-clusters C ′
l1, ... , C

′
l|k′

l

using constraints C ∪ M

map clusters C ′
l1, .... , C

′
l|k′

l

to classes L′
l1, ... , L

′
l|k′

l

if L′
l|i 6= ∅ for any 1 ≤ i ≤ k′l then

Cl ←{C
′
l1, ... , C

′
l|k′

l

}; /* accept sub-clustering */

Ll ←{L
′
l1, ... , L

′
l|k′

l

}

else

if k′l < 2ml then

k′l ← k′l + 1; /* increase number of sub-clusters */

jump to 1
end

end

end

end

Algorithm 1: Two-stage clustering. Steps 1 and 2 define the set of constraints. The main clustering,
using only “cannot-link” constraints, is done at step 3. Steps 4 describes how clusters that were not
mapped to a class, because they contained multiple label classes or an insufficient number of labels
of one class, are sub-divided. The sub-division process attempts to break down the cluster into an
increasing number of smaller ones until the smaller clusters can be mapped to classes (in which case
the larger cluster is replaced by the smaller ones - step 4h) or an upper limit of sub-clusters is reached.
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1.4.1 MPCKMeans algorithm description

The MPCKMeans clustering algorithm uses the provided constraints to build an objective function
(Equation 1) that is then iteratively minimised.

J =
∑

xi∈X

‖xi − µli‖
2
+

∑

(xi,xj)∈M

wij[li 6= lj]+
∑

(xi,xj)∈C

wij[li = lj] (1)

In Equation (1) xi is the feature value vector of the ith element, whereas the first term is the cost
of assigning element xi to cluster Xli with centroid µli . Metric learning changes this term to allow
for non-uniform weights for each cluster (for details see [1]). The second and third terms are costs
of violating the pairwise must-link ((xi, xj) ∈ M) and cannot-link ((xi, xj) ∈ C) constraints, with
penalties wij and wij respectively. Because violation of constraints is allowed, they are known as soft
constraints and the minimisation process is guaranteed to converge only to a local, and not global,
minimum.

Here we use the standard MPCKMeans implementation1. The code is written in Java and is
provided as part of the WekaUT library, a modified version of the popular Weka (Waikato Environment
for Knowledge Analysis) machine learning library [2]. The Java code was integrated directly into
Matlab and all algorithm options (such as the metric function and constraint weights) were left at
their defaults.

1.5 Clustering validation: confusion matrix

The confusion matrix can be a valuable tool to identify classes that are not being well separated. Figure
1 shows the confusion matrix for the data at hand where a 10-fold cross-validation was performed. As
can be seen the number of classification errors is small and relatively spread out through the matrix,
so the classification performance is approximately homogeneous among the classes.

Table 1: Confusion matrix for the classification of the segments. Values are the total number of miss-
classifications for a 10-fold cross validation of the clustering algorithm (i.e. 10 runs using 10% of the
values each time for validation). Values in the diagonal show the number of correct classification for
this class. The confusion matrix can be used to identify classes that are not well separated in the
classification process (non-diagonal values different than zero)

TT IC SC FS CR SO SS TS

Thigmotaxis (TT) 267 14 0 0 0 0 2 0
Incursion (IC) 8 331 3 0 4 0 4 2
Scanning (SC) 0 3 144 0 0 0 2 0

Focused search (FS) 0 0 1 72 0 0 0 1
Chaining response (CR) 0 8 0 0 90 0 1 0

Self orienting (SO) 0 0 0 0 0 61 0 0
Scanning surroundings (SS) 2 11 0 0 3 0 252 0

Target scanning (TS) 0 5 0 0 0 0 2 73

1.6 Mapping segment classes to trajectories

The mapping of classes of behaviourto swimming paths was done for each minimum path interval
(which dependend on the segmentation parameters). The choide of class for each interval took into
consideration all the segment classes that intersected a given interval. The corresponding segment
class was computed from the following expression:

1available at http://www.cs.utexas.edu/users/ml/risc/code/
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CTi
≡ arg max

ck

∑

Sj ∈ ck
Ti ∩ Sj 6= ∅

wk exp
(

−d2ij/2σ
2
)

(2)

where Ti is the ith interval, dij is the distance from the centre of the jth path segment, Sj , to the
interval, ckis the kth segment class, and wk is a class weight normalised so that

∑

wk = 1. The sum is
to be taken over all segments intersecting with the path interval Ti and which were mapped to the class
ck. The above expression effectively gives a higher weight to the central parts of trajectory segments
and to certain behavioural classes. In the equation above the distances dij between segments and path
intervals were computed in minimum path interval units (see Table 2 in main text). The parameter σ,
which controls how much segments influence the choice of segment classes over the swimming paths,
was set to σ = 4 and the class weight, wk, was defined as

wk ≡
Lmax

Lmax,k

(3)

where Lmax,k and Lmax are the maximum length of continuous segments of class k and of all
homogeneous segments, respectively.

The weight was made class dependent and inversely proportional to the maximum length of seg-
ments of the class so that transient classes, or classes which tend to be shorter, do not get overshadowed
by more common ones. Figure shows one example using constant class weights (wk = 1) and using
the above definition. As can be seen in the former case the self-orienting and focused search segments
do not get detected because of the larger influence of surrounding classes (incursion/thigmotaxis).

Figure 3: Detailed classification of one trajectory. Left : classification results using constant class
weights. Right : results using weights as defined in Eq. 3. As can be seen in the former case the
self-orienting loop (continuous green line) and focused search segments (dotted green line) did not get
detected and were replaced by neighboring classes (incursion, dashed black lines, and scanning, dotted
black lines, respectively).

Table 2 shows the average and maximum lengths of segments of each class using first wk = 1 and
then the definition above. An example of a trajectory classified with constant and variable weights is
shown in the Supplemental Material.

Method validation

Figure 4 shows the manual classification results of the full trajectories. The manual labelling included
only four major behavioural classes: thigmotaxis, target scanning, incursion, and scanning.
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Table 2: Mean and maximum length of consecutive segments of each class for the 250 cm / 90% overlap
classification (see Table 2 in the main text) with constant weights (wk = const. in Eq. 2) and after
adopting differentiated weights for minor and major classes (Eq. 3).

Mean
(old)

Max
(old)

Weight Mean
(new)

Max
(new)

Thigmotaxis 359.3 3,000 1.0 328.6 3,000
Incursion 194.5 1,225 2.4 191.2 1,200
Scanning 118.5 850 3.5 105.7 725
Scanning
surroundings

145.2 675 4.4 155.5 650

Focused search 107.4 550 5.4 125.5 575
Self orienting 105.1 375 8.0 139.1 400
Target scanning 123.2 350 8.6 129.6 375
Chaining response 97.3 300 10.0 139.1 400
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Figure 4: Results of a manual classification of complete swimming paths. Labels corresponding to four
behavioural classes (thigmotaxis, incursion, scanning, and target scanning / plots A-D respectively;
see main text, Figure 1, for a description of the classes) were assigned to swimming paths depending
on the types of behaviour that were identified. Multiple behavioural classes could be assigned to each
swimming path; the percentage corresponding to each class was calculated as an average of the number
of identified classes in each swimming path. White bars: control group; Black bars: stress group. Both
groups were compared over the complete set of trials using a Friedman test. Plot A shows that stressed
animals have a clear tendency to look for wall contact more often (thigmotaxis).

Full classification results

Figure 5 shows the detailed classification of full set of swimming paths from the first six trials, both
for the control (top) and the stress (bottom) group (27 animals each). Each bar represents a full trial
(up to 90 seconds) and shows changes in exploration strategies over the trial.

8



2 Software tools

In order to classify the trajectory segments custom code and a custom Graphical User Interface (GUI)
were developed in Matlab (Figure 6). The GUI made it possible to interactively label segments, see
the classification results and identify problems such as clusters which insufficient number of labels.

Following main features were implemented in the GUI:

• Browsing and labelling of swimming paths and path segments; available classes are defined in
the main configuration file used by the code. Multiple labels could be assigned to a swimming
path and multiple label sets (for different classification) can be stored;

• Running the clustering algorithm for different target number of clusters, with or without cross-
validation (to estimate the classification error);

• Highlighting of classes that each segment was mapped to; displaying statistics such as number
of labelled segments of each class and percentage of classification errors;

• Filtering swimming paths showing only the ones that fulfil a specific criteria such as segments
that were assigned to one particular clusters, ones which where wrongly classified or which are
isolated (i.e. do not have neighbouring segments of a known class), or which were mapped to a
class which is different from the one which they were mapped to in another reference classification
(allowing to compare two classifications with different segment lengths or overlaps, for example);

• Sorting of segments according to one feature value, a combination of all features (using a distance
function), or according to the maximum distance to the centre of the corresponding clusters
(useful to detect elements that lie close to the boundaries of the clusters);

Besides the custom GUI many other classes and support code was developed to analyse the swimming
paths. This included, for example, import routines for swimming paths stored as text files exported by
EthoVision, routines to perform the segmentation of swimming paths, code for computing the various
different features for each segment, and code to generate the constraints based on a set of segment
labels and run the clustering algorithm.

3 Data calibration

Swimming paths of rats were recording using an object tracking software (EthoVision [3], version 3.1).
Due to the relatively close range of the camera and the lens system used the recorded trajectories have
to be first calibrated.

We calibrated the trajectories by using the trajectories as show on screen in the tracking software,
which has its own built-in calibration method, as reference. To extract the reference points for from
software its playback capability showing a swimming path step by step as recorded was used; screen-
shots were named as to give an indication about the recording time at which they were taken. One
example screenshot is shown in Figure 7. The current position of the animal is shown as a black
(dark-grey) square; this feature was used to automatically detect the position from the screenshots
using imaging processing routines. As reference the outer (yellow) circle was used. The so extrac-
ted coordinates were then compared to the ones exported from the software, using the sample time
information as shown in the screenshots (seen on the bottom right).

The pairs of real and exported coordinates were then used to compute a pair of error functions for
x and y directions. These functions used a linear interpolation of the differences for estimating the
correction for the given coordinate along the trajectory

dx(x) = δxi + (
x− xi

xi+1 − xi

)(δxi+1 − δxi), xi ≤ x < xi+1 (4)
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dy(x) = δyi + (
y − yi

yi+1 − yi
)(δyi+1 − δyi), yi ≤ y < yi+1 (5)

where δxi and δyi, i = 1, 2, ..., N , are the sorted differences found between the N extracted points
from the trajectories and the respective exported coordinates. Figure 8 shows the two sets of error
functions used to calibrate the data at hand.

The error functions were then used to correct the complete set of trajectories. Figure 9 shows an
example of a distorted trajectory as exported by the tracking software and the same trajectory after
applying the correction.

The calibration was validated by using a (ten-fold stratified) cross-validation measuring the error
of the interpolated function with calibration points not used in the interpolation (Figure 10). The
results show the average error (x and y axis) for different number of calibration points; as can be seen
the improvements are only minimal when using more than 500 calibration points (representing 7-8
trajectories in the data used here).

For the final data calibration the full set of data points was used, 1654 for each coordinate for the
first set and 1195 for the second.
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Figure 5: Detailed classification of swimming paths for the first 6 trials and for all the animals. Top:
control group. Bottom: stress group. Bars show the choice of strategies over a 90 second trial. Short
paths, where the animal found the platform directly, and which were not segmented, are marked in
dark red. White boxes indicate segments with behaviour not falling into any of the classes and which
could not be categorised.

11



Figure 6: Graphical User Interface used to classify trajectory segments

Figure 7: Snapshot from the object tracking software (EthoVision) showing one trajectory segment.
Current position of the animal is shown by the black square. The position of the black square relative
to the yellow circle was used to automatically estimate the current position of the animal (using image
processing algorithms).

12



0
50

100
150

200

0
50

100
150

200
−20
−15
−10

−5
0
5

10
15

X [cm]Y [cm]

c
o

rr
e

c
ti
o

n
 [
c
m

[

0

50

100

150

200

0

100

200
−40

−20

0

20

40

X [cm]Y [cm]

c
o

rr
e

c
ti
o

n
 [

c
m

]

0
50

100
150

200

0
50

100
150

200
−60
−40
−20

0
20
40
60

X [cm]Y [cm]

c
o

rr
e

c
ti
o

n
 [

c
m

[

0

50

100

150

200

0

100

200
−100

−50

0

50

100

X [cm]Y [cm]

c
o

rr
e

c
ti
o

n
 [

c
m

]

Figure 8: Calibration functions. Left: x axis correction. Right: y axis correction.

Figure 9: Example of data calibration applied to one trajectory. Left : original trajectory as exported
by the tracking software. Right: corrected trajectory that closely matches the trajectory shown by the
tracking software on the screen.
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Figure 10: Calibration error as a function of the number of calibration points. The error represents the
distances (in the x or y axes) between corrected coordinates and points as extracted from snapshots
taking from the recording software. Only minor improvements are observed after around 500 calibration
points. Error bars represent the 95% CI.
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