Substrate Pathways in the Nitrogenase MoFe Protein by Experimental Identification of Small Molecule Binding Sites

Christine N. Morrison,¹ Julie A. Hoy,¹ Limei Zhang,¹ Oliver Einsle,² Douglas C. Rees^{1,3}*

¹ California Institute of Technology, Division of Chemistry and Chemical Engineering 114-96, Pasadena CA 91125, USA.

² Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany. BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.

³ Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.

Movie

In this movie, the MoFe protein is rotated to show the location of all pathways discussed in the manuscript, including newly identified and previously published pathways (blue: AI/IS pathway; magenta: AII pathway; forest green: BI pathway; green: CI pathway; orange: DI pathway/interstitial water channel; brown: center water channel; yellow: ammonia egress pathway; red: molecular dynamics pathway). The α subunits of the protein are shown as green and magenta ribbon, and the β subunits are shown in cyan and yellow ribbon. One FeMo-cofactor and P-cluster are shown as ball and sticks colored by element (yellow: sulfur; orange: iron; cyan: molybdenum; red: oxygen; grey: carbon). The two black Fe atoms in the FeMo-cofactor are Fe2 and Fe6, which bind the reversible inhibitor, carbon monoxide, in a bridging fashion. The three large black spheres are Xe binding sites in Av1 and Cp1. For clarity, the pathways, cofactors, and Xe binding sites are only displayed in one $\alpha\beta$.

	Av1-Xe structure compared	Cp1-Xe structure compared to
	to Av1 (1.0 Å, 3U7Q)	Cp1 (1.08 Å, 4WES)
RMSD of whole protein (Å)	0.192	0.215
RMSD of Xe1 binding site (Å)*	0.153	0.210
RMSD of Xe2 binding site (Å)*	0.151	0.232
RMSD of Xe3 binding site (Å)*	0.119	0.211

Table S1. RMSD of MoFe Protein Xe Binding Pockets Compared to Native Structures

* Residues within 6 Å of the Xe site were used in the RMSD calculations.

Protein (resolution)	PDB ID	Small molecule (total number observed)	Binding location
		IMD (4)	Surface
Av1 (1.0 Å)	$3U7Q^{1}$	$Mg^{2+}(2)$	Surface
		IMD	Interior
		CO(3)	Surface
Av1 (1.5 Å)	4TKV ²	00(3)	Interior (2)
		S	Interior
Cp1 (1.08 Å)	4WES^3	MPD	Surface
		$Mg^{2+}(5)$	Surface
$K_{p1}(1.60 \text{ Å})$	$10011 1010^4$	EDO (14)	Surface
Kp1 (1.00 A)		EDO	Surface
		EDO	Interior

Table S2. Small Molecules and Ions in Published MoFe Protein Structures

Pathway target	Pathway	Res	idues lining pathway (Av1 numbering)		
	AI	α	Val70, Val71, Trp72, Ile75, His195, His196, Asn199, Asp200, Val202, Arg203, Tyr229, Trp253, Ser254, Cys275, Ser278, Met279, Tyr281, Ile282		
	AII	α	Ile59, Tyr354, Ile355, Glu380, Gly422, Ser423, Gly424, Lys426, Glu427, Arg439, Glu440, Met441, His442, Asp445, Ser447, Tyr450, Phe459, Asp462, Met463		
FeMo- cofactor		β'	Thr360		
		α	Ala65, Gly66, Gly69, Val70, Gln90, Tyr91, Ser92, Arg93, Ala94, Gly95, Arg96, Gln191, His195		
	BI	β	Ala67, Lys68, Ala69, Leu67, Tyr102, Arg105, His106, Phe107, His193, Phe230, Thr232, Gly368, Asp369, Phe372, Asn445, Tyr447, Gly470, Phe471, Pro472, Phe474, Thr484		
		α	Gly61, Cys62, Tyr64, Ala65, Gln90, Tyr91, Ser92		
P-cluster	CI	β	Ala67, Lys68, Ala69, Leu77, Gly94, Ala97, Tyr98, Ser100, Tyr102, Arg105, His106, Phe107, His193, Phe230, Glu231, Gly368, Asp369, Phe372, Asn445, Tyr447, Gly470, Phe471, Pro472, Phe474, Thr484		
	Interstitial water channel ⁵ /DI	α	Lys68, Gly69, Gly73, Ser92, Arg93, Ala94, Gly95, Arg96, Arg97, Asn98, Tyr99, Tyr100, Ile101, Thr104, Val110, Thr111, Ile231, His442, Ser443, Tyr446		
		β	Leu16, Lys21, Leu24, Arg28, Tyr98, Arg105, Phe450, Arg453		
		β'	Gln513, Ala514, Asp516, Tyr517, Asn518, His519, Asp520, Leu521, Val522		
FeMo- cofactor	IS	S α Val70, Val71, Trp72, Ile75, Met78, Arg96, Va Val202, Trp205, Lys209, Tyr229, Trp253, Ile Met279			
	NH ₃ egress ⁶	α	Gln53, Met57, Thr58, Ile59, Arg60, Ala65, Gln191, Glu380, Asp403, Lys426		
		β	Gln93, Gly94, Ser115, Ser117		
	MD simulation ⁷	α	Asn49, Gly66, Val70, Ser190, Gln191, Ser192, Leu193, His195, His196, Asn199, Arg277, Ser278, Met279, Asn280, Tyr281, Gly357, Phe381, Ala382, His383		

 Table S3. Residues Involved in Proposed Pathways from Previous and Current Studies

Crystal		Displaced species	Occupancy	Distance*	Distance* to (Å)	
(PDB ID)	Site	in native protein	(%)	FeMo- cofactor	surface	
Av1 (3U7Q)	IMD	НОН	100	11.5	11.6	
Avl (4TKV)	СО	НОН	60%	17.0	8.7	
Av1 (4TKV)	S	Empty pocket	100%	19.0	10.9	
Kp1 (1QGU)	EDO	НОН	100	11.6	10.1	

Table S4. IMD, CO, S, and EDO Binding Sites in Av1 and Kp1

* Distances were measured from the closest substrate atom to the closest metal in the FeMocofactor or to the closest non-solvent atom on the protein surface.

Residue	Native protein			Xe/PRL binding
conservation	All residues	Non-surface residues	Surface residues	pockets and AI, AII, BI, CI pathways
Conservation of specific residue	38.0%	38.4%	24.8%	62.5%
Conservation of residue type (hydrophobic or hydrophilic)	73.7%	63.4%	53.2%	85.6%

Table S5. Conservation of Specific Residues and Residue Type in Av1 and Cp1

	Residue	Atom	Distance from Xe (Å)	Corresponding residue in Cp1		
1	α-Val71	CG1	3.88	α-Val60		
2	a-Trp72	CE3	4.48	α-Met61		
3	α-Ile75	CD1	3.29	α-Ile64		
4	α-Ala198	0	5.95	α-Ala187		
5	α-Val202	CG2	3.59	α-Val191		
6	a-Trp253	CE3	4.34	α-Leu238		
7	α-Ser254	CB	4.31	a-Thr239		
8	α-Ile262	CD1	4.59	α-Val247		
9	9 α-Met279 CE 4.49 α-Ile264					
	Hydrophobic residues: 89%					
	Conservation of specific residue: 44%					
		(Conservation of residue typ	pe*: 100%		

Table S6. Close Contacts and Residue Conservation for Av1-Xe1 (Protein Interior)

	Residue	Atom	Distance from Xe (Å)	Corresponding residue in Cp1		
1	α-His196	CD2	5.20	α-His185		
2	α-Asn199	0	3.98	α-Asn188		
3	a-Asp200	OD1	3.08	α-Asn189		
4 α-Arg203 NE 4.17				α-Met192		
5 α-Tyr281 O 3.67 α-Tyr260				α-Tyr266		
6	6 α-Ile282 CD1 3.87 α-Ile267					
7	7 α-His285 CB 4.18 α-Met270					
	Hydrophobic residues: 29%					
	Conservation of specific residue: 57%					
			Conservation of residue ty	/pe*: 71%		

 Table S7. Close Contacts and Residue Conservation for Av1-Xe2 (Protein Surface)

	Residue	Atom	Distance from Xe (Å)	Corresponding residue in Cp1		
1	β-Tyr233	OH	5.24	β-Gly180		
2	β-Arg468	0	5.61	β-Arg408		
3	β-Ile469	CD1	4.36	β-Phe409		
4	β-Ser482	CB	4.50	β-Asn422		
5	β-Thr483	С	4.81	β-Pro423		
6	β-Thr484	0	3.92	β-Lys424		
7	β-Gly489	0	5.10	β-Gly429		
8	β-Gln492	CB	4.19	β-Arg432		
9	β-Ile493	CG1	3.83	β-Leu433		
10	10 β -Thr496 OG1 4.44 β -Glu436					
	Hydrophobic residues: 40%					
	Conservation of specific residue: 20%					

Table S8. Close Contacts and Residue Conservation for Av1-Xe3 (Protein Surface)

Conservation of residue type*: 90% * Residues are categorized as hydrophilic or hydrophobic

	Residue	Atom	Distance from Xe (Å)	Corresponding residue in Av1		
1	α-Asp107	OD2	5.84	α-Asp117		
2	a-Lys120	CE	5.99	a-Lys130		
3	α-Glu127	OE1	5.40	α-Glu137		
4	β-Arg12	0	3.81	β-Arg59		
5	β-Lys13	С	4.11	β-Glu60		
6	β-Ala14	Ν	3.93	β-Ala61		
7	β-Leu15	0	3.51	β-Leu62		
8	8 β-Arg16 NH1 3.73 β-Thr63					
9	β-Ile17	N	5.81	β-Val64		
10	β-Glu371	0	5.84	β-Gly424		
11	11 β-Asp373 OD2 5.09 β-Asp426					
	Hydrophobic residues: 27%					
	Conservation of specific residue: 64%					
		(Conservation of residue type	pe*: 91%		

Table S9. Close Contacts and Residue Conservation for Cp1-Xe1 (Protein Surface)

	Residue	Atom	Distance from Xe (Å)	Corresponding residue in Av1			
1	a-Asp254	0	3.57	α-Lys269			
2	α-Leu255	CB	4.30	α-Leu270			
3	α-Pro278	CG	5.41	α-Pro293			
4	a-Cys300	0	3.38	a-Lys315			
5	α-Phe301	CZ	3.84	α-Phe316			
6	α-Val406	CG1	3.90	n/a			
7	7 α-Ile407 CD1 4.18 n/a						
	Hydrophobic residues: 71%						
	Conservation of specific residue: 43%						
			Conservation of residue ty	/pe*: 80%			

Table S10. Close Contacts and Residue Conservation for Cp1-Xe2 (Protein Surface)

		Residue	Atom	Distance from Xe (Å)	Corresponding residue in Av1		
	1	α-Phe460	CE1	4.63	α-Gly422		
	2	α-Lys477	CG	3.95	α-Arg439		
	3	α-Leu479	CD2	5.55	α-Met441		
	4	a-Asp483	OD2	5.94	α-Asp445		
	5	α-Tyr488	OH	3.61	a-Tyr450		
	6	α-Asn496	0	5.39	α-Ile458		
	7	α-Phe497	CD1	3.29	α-Phe459		
	8	α-Gly498	Ν	5.37	α-Ala460		
	9	α-Glu500	CB	3.83	α-Asp462		
	10	α-Leu501	Ν	3.71	α-Met463		
	Hydrophobic residues: 60%						
	Conservation of specific residue: 30%						
	Conservation of residue type*: 90%						
* Re	sidue	s are categori	ized as h	ydrophilic or hydrophobic			

Table S11. Close Contacts and Residue Conservation for Cp1-Xe3 (Protein Interior)

	Residue	Atom	Distance from ligand (Å)	Corresponding residue in Av1			
1	β-Tyr30	CZ	3.7	β-Leu77			
2	β-His59	NE2	3.7	β-His106			
3	β-Phe60	CZ	3.8	β-Phe107			
4	β-Phe178	CE2	3.4	β-Phe230			
5	β-Val179	CA	3.5	β-Glu231			
6	β-Gly180	C3	3.4	β-Thr232			
7	β-Asp183	OD2	4.1	β-Asn236			
8	β-Glu323	OE2	3.0	β-Phe375			
9	β-Gly410	0	3.8	β-Gly470			
10	β-Phe411	C1	3.8	β-Phe471			
11	β-Lys424	NZ	2.7	β-Thr424			
	Conservation of specific residue: 46%						
	Conservation of residue type*: 73%						

Table S12. Close Contacts for Cp1-PRL

Conservation of residue typ
 * Residues are categorized as hydrophilic or hydrophobic

	Residue	Atom	Distance from ligand (Å)	Corresponding residue in Cp1
1	α-Ala94	0	4.1	α-Gly85
2	a-Gly95	Ν	5.2	α-Gly86
3	α-Arg96	0	3.1	α-Arg87
4	α-Arg97	CA	3.9	α-Arg88
5	α-Asn98	ND2	3.9	α-Phe89
6	α-Tyr99	CE1	3.3	a-Lys90
7	a-Tyr100	CE2	4.2	α-Pro91
8	α-Val110	CG1	4.2	α-Asn102
9	α-Thr111	CG2	3.9	α-Glu103
10	β'-Asp516	0	5.7	β'-Glu451
11	β'-Tyr517	C5	4.1	β'-Glu452
12	β'-Asn518	Ν	6.0	β'-Asp453
13	β'-His519	С	5.4	β'-Phe454
14	β'-Asp520	OD1	3.7	β'-Glu455
15	β'-Leu521	Ν	4.9	β'-Val456
Conservation of specific residue: 20%				
	Conservation of residue type*: 60%			

Table S13. Close Contacts for Av1-IMD

AI pathway in Av1	AI pathway in Cp1
α-Val70	α-Val59
α-Val71	α-Val60
a-Trp72	a-Met61
α-Ile75	α-Ile64
a-His195	α-His184
α-His196	a-His185
α-Asn199	α-Asn188
a-Asp200	α-Asn189
α-Val202	α-Val191
a-Arg203	α-Met192
a-Tyr229	a-Tyr214
α-Trp253	α-Leu238
α-Ser254	a-Thr239
a-Cys275	a-Cys260
a-Ser278	a-Ser263
α-Met279	α-Ile264
a-Tyr281	a-Tyr266
α-Ile282	α-Ile267
Conservation of specific residue: 67%	
Conservation of residue type*: 94%	

Table S14. Residues Lining the AI Pathway in Av1 and Cp1

AII pathway in Av1	AII pathway in Cp1	
α-Ile59	α-Ala48	
a-Tyr354	a-Tyr340	
a-Ile355	α-Val341	
a-Glu380	a-Glu366	
α-Gly422	α-Phe460	
α-Ser423	α-Ala461	
α-Gly424	a-Gly462	
a-Lys426	a-Lys464	
α-Glu427	α-Glu465	
α-Arg439	a-Lys477	
α-Glu440	α-Gln478	
α-Met441	α-Leu479	
α-His442	α-His480	
α-Asp445	α-Asp483	
α-Ser447	a-Asn485	
a-Tyr450	a-Tyr488	
α-Phe459	α-Phe497	
a-Asp462	a-Glu500	
α-Met463	α-Leu501	
β'-Thr360	β'-Gln308	
Conservation of specific residue: 45%		
Conservation of residue type*: 90%		

Table S15. Residues Lining the AII Pathway in Cp1 and Av1

BI pathway in Av1	BI pathway in Cp1	
α-Ala65	α-Ala54	
a-Gly66	α-Gly55	
a-Gly69	α-Gly58	
α-Val70	α-Val59	
a-Gln90	α-Phe79	
a-Tyr91	α-Tyr80	
a-Ser92	α-Thr81	
a-Arg93	α-Trp82	
α-Ala94	a-Gly83	
a-Gly95	α-Gly84	
a-Arg96	α-Arg85	
α-Gln191	α-Gln180	
a-His195	α-His184	
β-Ala67	β-Ala20	
β-Lys68	β-Lys21	
β-Ala69	β-Thr22	
β-Leu67	β-Tyr30	
β-Tyr102	β-Val55	
β-Arg105	β-Arg58	
β-His106	β-His59	
β-Phe107	β-Phe60	
β-His193	β-His146	
β-Phe230	β-Phe178	
β-Thr232	β-Val179	
β-Gly368	β-Gly319	
β-Asp369	β-Asp320	
β-Phe372	β-Glu323	
β-Asn445	β-Asn392	
β-Tyr447	β-Tyr394	
β-Gly470	β-Gly410	
β-Phe471	β-Phe411	
β-Pro472	β-Pro412	
β-Phe474	β-Met414	
β-Thr484	β-Lys424	
Conservation of specific residue: 68%		
Conservation of r	esidue type*: 82%	

Table S16. Residues Lining the BI Pathway in Cp1 and Av1

CI pathway in Av1	CI pathway in Cp1	
a-Gly61	α-Gly50	
a-Cys62	a-Cys51	
α-Tyr64	a-Tyr53	
α-Ala65	α-Ala54	
α-Gln90	α-Phe79	
a-Tyr91	a-Tyr80	
a-Ser92	a-Thr82	
β-Ala67	β-Ala20	
β-Lys68	β-Lys21	
β-Ala69	β-Thr22	
β-Leu77	β-Tyr30	
β-Gly94	β-Gly47	
β-Ala97	β-Ser50	
β-Tyr98	β-Tyr51	
β-Ser100	β-Thr54	
β-Tyr102	β-Val55	
β-Arg105	β-Arg58	
β-His106	β-His59	
β-Phe107	β-Phe60	
β-His193	β-His146	
β-Phe230	β-Phe178	
β-Glu231	β-Val179	
β-Gly368	β-Gly319	
β-Asp369	β-Asp320	
β-Phe372	β-Glu323	
β-Asn445	β-Asn392	
β-Tyr447	β-Tyr394	
β-Gly470	β-Gly410	
β-Phe471	β-Phe411	
β-Pro472	β-Pro412	
β-Phe474	β-Met414	
β-Thr484	β-Lys424	
Conservation of specific residue: 66%		
Conservation of residue type*: 81%		

Table S17. Residues Lining the CI Pathway in Cp1 and Av1

DI pathway in Av1	DI pathway in Cp1	
a-Lys68	α-Lys57	
α-Gly69	α-Gly58	
α-Gly73	α-Gly62	
a-Ser92	α-Thr81	
a-Arg93	α-Trp82	
α-Arg96	α-Arg85	
α-Arg97	α-Arg86	
α-Asn98	a-Ser89	
α-Tyr99	a-Lys90	
α-Tyr100	a-Pro91	
α-Ile101	α-Glu92	
α-Thr104	α-Thr95	
α-Val110	α-Asn100	
α-Thr111	α-Glu101	
α-Ile231	α-Ile216	
α-His442	α-His480	
a-Ser443	α-Ser481	
α-Tyr446	α-Tyr482	
β-Leu16	n/a	
β-Lys21	n/a	
β-Leu24	n/a	
β-Arg28	n/a	
β-Tyr98	β-Tyr50	
β-Arg105	β-Arg57	
β-Phe450	β-Phe397	
β-Arg453	β-Arg400	
β'-Gln513	n/a	
β'-Ala514	β'-Cys449	
β'-Asp516	β'-Glu451	
β'-Tyr517	β'-Glu452	
β'-Asn518	β'-Asp453	
β'-His519	β'-Phe454	
β'-Asp520	β'-Glu455	
β'-Leu521	β'-Val456	
β'-Val522	β'-Val457	
Conservation of sp	ecific residue: 50%	
Conservation of residue type*: 87%		

Table S18. Residues Lining the DI Pathway/Interstitial Water Channel in Cp1 and Av1

IS pathway in Av1	IS pathway in Cp1	
α-Val70	α-Val59	
α-Val71	α-Val60	
α-Trp72	α-Met61	
α-Ile75	α-Ile64	
α-Met78	α-Met67	
α-Arg96	α-Arg85	
α-Val179	α-His168	
α-His195	α-His184	
α-Val202	α-Val191	
α-Trp205	α-Glu194	
α-Lys209	α-Lys198	
α-Tyr229	α-Tyr214	
α-Trp253	α-Leu238	
α-Ile262	α-Val247	
a-Glu263	α-Gln248	
α-Met279	α-Ile264	
Conservation of specific residue: 56%		
Conservation of residue type*: 94%		

Table S19. Residues Lining the IS Pathway in Av1 and Cp1

NH ₃ egress pathway in Av1	NH ₃ egress pathway in Cp1	
α-Gln53	α-Val42	
α-Met57	α-Ile46	
α-Thr58	α-Thr47	
α-Ile59	α-Ala48	
α-Arg60	α-Arg49	
α-Ala65	α-Ala54	
α-Gln191	α-Gln180	
α-Glu380	α-Glu366	
α-Asp403	α-Asp441	
α-Lys426	α-Lys464	
β-Gln93	β-Gln46	
β-Gly94	β-Gly47	
β-Ser115	β-Thr68	
β-Ser117	β-Ser70	
Conservation of specific residue: 71%		
Conservation of residue type*: 93%		

Table S20. Residues Lining Dance's NH₃ Egress Pathway in Av1 and Cp1⁶

MD pathway in Av1	MD pathway in Cp1	
α-Asn49	a-Asn38	
α-Gly66	α-Gly55	
α-Val70	α-Val59	
α-Ser190	α-Ser179	
α-Gln191	α-Gln180	
a-Ser192	α-Ser181	
α-Leu193	α-Ala182	
α-His195	α-His184	
α-His196	α-His185	
α-Asn199	α-Asn188	
α-Arg277	α-Arg262	
α-Ser278	α-Ser263	
α-Met279	α-Ile264	
a-Asn280	a-Asn265	
α-Tyr281	α-Tyr268	
α-Gly357	a-Gly343	
α-Phe381	α-Phe367	
α-Ala382	α-Ala368	
α-His383	α-His369	
Conservation of specific residue: 90%		
Conservation of residue type*: 100%		
ad as bridgenhilis on bridge at the		

Table S21. Residues Lining Smith's Molecular Dynamics Pathway in Cp1 and Av1⁷

Av1-Xe1 and -Xe2

Av1-Xe3

Cp1-Xe1

Figure S1. Electron density maps (blue mesh) and anomalous difference maps (orange mesh) for each Xe binding site, including noncrystallographically-related pairs, and their surrounding environment. Both maps are contoured to 3 σ . Residues with at least one atom that is 4 Å or closer to the Xe atom are shown in sticks. Note that the electron density for Cp1-Xe3 is not visible above the orange Xe atom at 3 σ due to low site occupancy.

Figure S2. PRL binding site with the neighboring residues in sticks. The PRL molecule is shown with spheres and sticks and is colored by element. The electron density of the PRL and nearby water molecules are shown in blue mesh contoured to 2.0 σ . Distances between the closest N atom of PRL and the N of β -Lys424 and OE2 of β -Glu323 are given. Note the well-defined electron density of the water molecules. See Experimental section of the main text for further discussion.

Figure S3. Overlays of four different Av1-Av2 complexes: $ADP \cdot AlF_4^-$ stabilized Av1-Av2 (PDB ID 1M34, red cartoon), nucleotide-free Av1-Av2 (PDB ID 2AFH, blue cartoon), MgAMPPCP-bound Av1-Av2 (PDB ID 2AFK, forest green cartoon), and MgADP-bound Av1-Av2 (PDB ID 2AFI, orange cartoon). The docking of the Fe protein does not block any of the proposed substrate pathways^{8, 9}.

Figure S4. Overlay of the molecular surface of the FeMo-cofactor-deficient Av1 protein (wheat surface, PDB ID 1L5H)¹⁰. The channel used for transportation of the FeMo-cofactor is visible as the hole in the wheat surface that connects the protein surface to the location of the FeMo-cofactor in the mature protein. The green protein backbone is the α -subunit of the Av1-Xe structure, and the other colored surfaces belong to the substrate access pathways. Three are visible: the AI (blue surface), AII (magenta surface), and NH₃ egress (yellow surface) pathways. Part of the AII pathway overlaps with the FeMo-cofactor insertion pathway.

References

- Spatzal, T., Aksoyoglu, M., Zhang, L., Andrade, S. L., Schleicher, E., Weber, S., Rees, D. C., and Einsle, O. (2011) Evidence for interstitial carbon in nitrogenase FeMocofactor, *Science 334*, 940.
- 2. Spatzal, T., Perez, K. A., Einsle, O., Howard, J. B., and Rees, D. C. (2014) Ligand binding to the FeMo-cofactor: Structures of CO-bound and reactivated nitrogenase, *Science* 345, 1620-1623.
- 3. Zhang, L.-M., Morrison, C. N., Kaiser, J. T., and Rees, D. C. Nitrogenase MoFe-protein from *Clostridium pasteurianum* at 1.08 Å resolution: Comparison to the *Azotobacter vinelandii* MoFe-protein., *Acta Crystallogr., Sect. D: Biol. Crystallogr. In press*, doi: 10.1107/S1399004714025243.
- 4. Mayer, S. M., Lawson, D. M., Gormal, C. A., Roe, S. M., and Smith, B. E. (1999) New insights into structure-function relationships in nitrogenase: A 1.6 Å resolution X-ray crystallographic study of *Klebsiella pneumoniae* MoFe-protein, *J. Mol. Biol.* 292, 871-891.
- 5. Barney, B. M., Yurth, M. G., Dos Santos, P. C., Dean, D. R., and Seefeldt, L. C. (2009) A substrate channel in the nitrogenase MoFe protein, *J. Biol. Inorg. Chem.* 14, 1015-1022.
- 6. Dance, I. (2013) A molecular pathway for the egress of ammonia produced by nitrogenase, *Sci. Rep. 3*, 3237.
- 7. Smith, D. M. A., Danyal, K., Raugei, S., and Seefeldt, L. C. (2014) A substrate channel in nitrogenase revealed by a molecular dynamics approach, *Biochemistry 53*, 2278-2285.
- Schmid, B., Einsle, O., Chiu, H.-J., Willing, A., Yoshida, M., Howard, J. B., and Rees, D. C. (2002) Biochemical and structural characterization of the cross-linked complex of nitrogenase: Comparison to the ADP-AlF₄-stabilized structure, *Biochemistry* 41, 15557-15565.
- 9. Tezcan, F. A., Kaiser, J. T., Mustafi, D., Walton, M. Y., Howard, J. B., and Rees, D. C. (2005) Nitrogenase complexes: multiple docking sites for a nucleotide switch protein, *Science 309*, 1377-1380.
- Schmid, B., Ribbe, M. W., Einsle, O., Yoshida, M., Thomas, L. M., Dean, D. R., Rees, D. C., and Burgess, B. K. (2002) Structure of a cofactor-deficient nitrogenase MoFe protein, *Science 296*, 352-356.