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Decision	  model	  

Perceived value 

The perceived value (x) of a reward stimulus scaled to magnitude m is given by Stevens’ 

Power Law [1]: 

𝑥 = 𝐴  𝑚! 

where A and α are individual parameters of the observer. For 𝐴 > 0 and 0 < 𝛼 < 1, the 

power value function is increasing and concave. It is a case of the isoelastic value function: 

𝑢 𝑚 = !!!!

!!!
 for   𝜂 ≠ 1 

with elasticity coefficient 1− 𝜂 and relative risk-aversion coefficient 𝜂 according to the 

Arrow-Pratt criterion. Our value function is restricted to the case 𝜂 < 1; that is we do not 

consider cases where A and α are negative. As an alternative to isoelastic value functions, the 

negative exponential value function is sometimes used to analyse choice behaviour under 

uncertainty. It has the form, 𝑢 𝑚 = 1− exp(−𝜂𝑚) with constant absolute risk-aversion 𝜂, 

which means that risk attitude is independent of current wealth. The negative exponential 

value function is satiated for high reward magnitude, which means that variation in reward 

magnitude might not lead to variation in perceived value, and because of that we favour the 

isoelastic value function. Satiated value functions are not compatible with the sort of 

preference patters we would like explain.  

 

The state variable (E) that relates our stimuli to perceived value is volumetric magnitude. The 

stimuli are sequences of virtual gold and silver coins, each coin of maximum value £1 (100 

pence) and each coin scaled in size by a factor m. The sequence of perceived states is: 

𝐸(𝑡) = 100  𝑚!(𝑡)+𝜀! 

where 𝜀! is sensory noise in the observer’s sampling of the states. It is assumed that the error 

lies in sampling of the state and not in the implementation of the value function. The value 

function relating a sequence of virtual coins of scales 𝑚(𝑡) to perceived value is: 

𝑥(𝑡) = 𝐾  𝐸!(𝑡)   

where 𝜅 = 𝛼 3, 𝐾 = 𝐴 (100!). 



Incentive value 

The differential equation describing incentive value belongs to a class used in a wide range of 

problems from electrical engineering to membrane physiology [2].  In this case, we propose 

that economic agents continuously track the incentive value, 𝑦(𝑡) of a sequence of 

temporally extended outcomes in relation to historical incentive. The change in incentive 

value, 𝑑𝑦 𝑑𝑡 is the perceived value, 𝑥(𝑡) experienced in relation to the previously 

accumulated incentive: 
𝑑𝑦
𝑑𝑡 = 𝑥(𝑡)− 𝑤𝑦(𝑡) 

where w is a weight parameter for characterizing the immediacy of the running contrast on 

the marginal incentive. The homogeneous solution is: 

𝑦(𝑡) = 𝑒!!" 𝑥 𝑡 𝑒!"  𝑑𝑡 

The retrospective incentive value of an episode of duration T is thus: 

𝑦(𝑇) = 𝑥 𝑡 𝑒
!!!
!   𝑑𝑡

!

!
 

where 𝜏 = 1/𝑤. The decision variable, 𝜌! for two options (A and B in Fig. 2a) is the 

incentive value ratio: 

𝜌! =
𝑦!
𝑦!

 

In order to compare retrospectively two options evaluated sequentially in the past, the agent 

discriminates the evidence (in favour of option A): 

𝜖! = −log !
!!

 

Preference for option A, 𝑃! follows from logistic discrimination of the evidence: 

log
𝑃!

1− 𝑃!
= 𝐵 𝜖! + 𝛽!  

where B is the inverse temperature and 𝛽! is decision bias in favour of option A. Logistic 

discrimination is functionally equivalent to Softmax activation for binary choices. The 

parameters B and β describe the sensitivity and predisposition of the decision maker to gauge 

the evidence for and against the two choice options.  

 

Accumulation of evidence in terms of incentive value, 𝑦(𝑡) occurs as integration of perceived 

value, 𝑥(𝑡) by means of an exponential filter, ℎ(𝑡) with decay parameter τ. The Laplace 



transform filter is ℒ ℎ(𝑡) = 𝑧 + 1 𝜏 !! and the filter’s impulse response is the exponential 

decay function: 

ℎ(𝑡) = 𝑒!
!
! 

which specifies the retrospective period weights to the sequence of perceived values in the 

computation of total incentive. A schematic circuit of this mechanism is illustrated in the 

dotted boxes in Fig. 2a. The state variables E pertaining to two options of temporally 

extended outcome are expressed in terms of perceived value, x and incentive value y. The 

perceived and incentive values are available to the agent during the episodes at the end of 

which the competing incentives are discriminated under noisy comparison. The decision 

noise components 𝜀! ∈ 𝑁 𝜇!,𝜎!!  and 𝜀! ∈ 𝑁 𝜇!,𝜎!!  specify the bias (β) and sensitivity (B) 

of the agent, 𝛽! = 𝜇! − 𝜇! and 𝐵!! = 𝐶 𝜎!! + 𝜎!!, where C is a scaling constant for 

aligning the logistic and normal distributions. The cumulative logistic distribution with 

variance 𝜎! = 1 is given for 𝐶 = 3 𝜋. However, a better [3] overall match occurs for 

𝐶 = 1.702!!, and this value was used in the simulations in Fig. 2b,d-e. 
 

The generative model describes temporally extended outcome as continuous time series, but 

for the sake of practicality, we operate the model in the discrete domain in which perceived 

values are sampled and held constant throughout the sampling interval that is the duration of 

each stimulus. The unit of 𝜏 is seconds in the continuous domain, and in the discrete 

implementation we can characterize the decay in discrete units of stimulus onset asynchrony 

(soa) in terms of its half-life:  

𝜏!.! =
−log  (0.5)

𝑠𝑜𝑎 𝜏 

In the discrete implementation, incentive value can be expressed in its recursive form: 

𝑦! = (1− 𝑎)𝑦!!! + 𝑥!, where 𝑎 = 1− exp(−𝑤) as illustrated in Fig. 2a. 

 

For two options of equal contents presented so that the temporal profile for one option is 

increasing and decreasing for the other option, as in Fig. 2b, preference for positive contrasts 

causes differential discount on the perceived values of the competing options. This 

mechanism leads to evidence in favour of the increasing profile, under the parameterization 

of 𝜏, B and β. Notice that optimal accumulation of evidence is characterized by 𝜏 = ∞ 

leading to 𝜖! = log 𝑥!𝑑𝑡   − log 𝑥!𝑑𝑡 . The parameters and variables of the model are 

summarized in Table S1. 



Alternative mechanisms 

Because the bounded dynamic range of neural encoding makes linear integration of the 

perceived values computationally intractable, especially for episodes of unknown duration, 

an observer may use numerosity or symbolic representations of reward value to construct 

summary evaluations for temporally extended outcomes. However, even for symbolically 

represented reward magnitudes, summary evaluation is facilitated by relative encoding [4]. 

Alternatively, the observer might adopt different valuation strategies for increasing and 

decreasing sequences. It is conceivable that expectations about upcoming events might affect 

some observers in ways that lead to differential valuation depending on expectation. 

However, such a strategy would require the observer to decide which strategy to follow 

before the experience begins. By contrast, leaky integration of the perceived values 

implement accumulation of evidence in the same way for all experiences. Thus, contrast-

guided evaluation as described above is a biologically plausible and parsimonious mechanism 

for constructing summary evaluations for temporally extended outcomes. 

 

Simulations	  

In order to test the ability of the proposed framework to characterize violation of dominance 

for temporally extended outcomes, the generative model was tested in several parametric 

implementations. Competing options with identical contents were used to simulate the 

mechanism in Fig. 2a. Each option had 19 elements; arranged along a decreasing or 

increasing profile as shown in Fig. 2b. The function 𝑥 = (𝐸/100)! implements perceived 

value and the exponential filter 𝐻 = (𝑧 + 1 𝜏)!! implements accumulation of incentive 

value. Signal-to-noise ratio (SNR) was simulated by variance in the sampling noise 

𝜀! ∈ 𝑁 0,𝜎!! , SNR = EV 𝐸 /𝜎!, and sensitivity and biases of the decision maker were 

simulated by decision noise. Since it is the difference in the expected value of the decision 

noises that determines bias, and it is the combined variance that determines sensitivity, for 

the sake of simplicity we added all the decision noise to option A, 𝜀! ∈ 𝑁 𝛽!,𝜎!! , leaving 

𝜀! = 0. 

  

Simulation 1 

We first investigated the interaction of value function and decay in the accumulation of 

evidence. The decay parameter τ discounts perceived value in the accumulation of incentive 

value and the value function parameter κ determines the absolute amount of this discount. We 



simulated the relative discount on incentive value based on the expected value of evidence 

(i.e. no noise) over the ranges 0.34 ≤ 𝜅 ≤ 1 and 1 ≤ 𝜏 ≤ 21 (Fig. S2, Fig. 2c). 

 

Simulation 2  

We then investigated the mutual representation of SNR, bias and sensitivity of the decision 

maker for choice data produced by the model. Here we used a fixed value function 

𝑥 = (𝐸/100)!.!" and exponential filter 𝐻 = (𝑧 + 1 21𝑠)!!, and varied the specification of 

the decision and sampling noises. We used three decision noises with expected values 0, 1 

and –1 (simulating bias) and standard deviations of 0.25. 0.75 and 0.5 (simulating 

sensitivity). The bias values are arbitrary and mainly serve to separate visually the 

psychometric functions in Fig. 2d. Three values of sampling noise variance 𝜎!! were 

calculated to simulate signal-to-noise ratios, SNR ∈ 0, 4, 8dB . On each simulated trial, one 

value of decision noise was drawn for 𝜀! and 38 values of sampling noise were drawn for 𝜀! 

and added to the state elements of the two options.  

 

Simulation 3  

We finally simulated the interaction of SNR and decay in the accumulation of evidence. To 

investigate the effect of state sampling noise, three values of variance 𝜎!! were calculated to 

simulate signal-to-noise ratios, SNR ∈ −4, 0, 4dB . For each SNR, we simulated preference 

for the increasing profile for four values of decay, 𝜏 ∈ 1, 3, 8, 21s  (Fig. 2e). 

 

Procedures	  

Pre-experimental evaluation 

We measured the relationship between the physical size and perceived value of the virtual 

coins. The coins were presented to the subjects in a 3D projection to simulate the variation in 

volume. The state variable is coin volume, and objective value would be proportional to 

volume insofar as the specific value of a precious coin is given in prize units per mass unit 

(e.g. £/gr). This means that a coin scaled in diameter by a factor m differs in volume by m3 

compared to an unscaled coin. If perceived value would correspond to objective value there 

would be a linear relationship between simulated volume and subjective evaluations (𝜅 = 1). 

The perceived value of the virtual coins was determined by a Becker-DeGroot-Marschak 

(BDM) evaluation task.  

	  



The participants were given a 5£ budget, and they were instructed to place bids on each of 

120 coins according to how much they felt each coin was worth. The coins varied in 

simulated volume from 1% to 100% of a reference coin that was shown on the screen before 

the bidding started. A randomly chosen subset of the bids were drawn to exchange the £5 

budget to approximately 30 virtual coins of varying size and value according to a second-

prize auction [5]. This set of coins would become the subject’s endowment in the main 

experiment that followed. Before the bidding round, the reference coin of nominal value 100 

pence (£1) was shown on the screen. A training round of 20 coins preceded the actual bidding 

round. Each coin was visible for 350ms following a response window showing a black screen 

with the text “Place a bid for the coin” for up to 5 seconds.  

 

After the bidding round the participants watched a computer animation of the auction, in 

which one coin at a time was drawn from the total pool and the associated bid placed by the 

participant was shown against the computer’s bid. For each coin drawn in this way, the 

computer placed a random bid drawn from a rectangular distribution without taking into 

account the specification of the coin at stake or the participant’s bid. If the computer’s bid 

was higher, the coin at stake was discarded and a new coin was drawn from the pool of bids 

without replacement. If the participant’s bid was higher, they would buy the coin and they 

would pay the amount bid by the computer. This amount was then taken from their budget, 

and this procedure would continue until the budget was spent. In this way approximately 30 

bids were realized to ensure the participants an initial endowment of virtual coins. This 

endowment had an expected value of £10 because the coins were obtained in a second prize 

action [5] consistent with the BDM method [6]. In the subsequent experiments the value of 

the endowment was adjusted according to the participants’ performance in the task, and 

payment was made on the basis of the final adjusted value of the endowment at the end of the 

experiment. 

 

Experiment 1 

Experiment 1 was designed to test if participants were sensitive to the chronological 

configuration of perceived outcomes. We used as option alternatives a set of arbitrary 

temporal profiles and slight modifications to these profiles. Experiment 1a used the temporal 

profiles shown in Fig. 3a (top). They included 9 pairs of sequences of up to 8 coins, and each 

condition was repeated 30 times. In three conditions the last coin was omitted, so 7 coins 



competed with 8 coins. In one case (Fig. 3a, top left), the contents were identical; only the 

order in which the coins were presented differed. Experiment 1b used the temporal profiles 

shown in Fig. 3a (bottom). They included 9 pairs of sequences of 10 coins, and each 

condition was repeated 20 times. In one case (Fig. 3a, bottom left), the contents were 

identical; only the order in which the coins were presented differed.  

 

The CSs were randomized and balanced as follows: each CS pair was used twice in two 

different subjects to indicate either option of one condition. For example, CS1 would predict 

USA and CS2 would predict USB to one subject, while to another subject CS1 would predict 

USB and CS2 would predict USA. CS1 and CS2 were not used together otherwise, but other 

subjects saw CS1 and CS2 in other combinations (CS1 vs CS3, CS2 vs CS4 etc.) in other 

conditions excluding USA and USB. 

 

Experiment 2 

Experiment 2 was designed to test if evaluation of sequence duration interacted with temporal 

contrasts. In this experiment long sequences were offered against weakly dominated 

alternatives. Between trials, the long sequences varied in length between 15 and 19 coins. To 

each long sequence, a weakly dominated alternative was created by removing between 0 and 

4 coins creating short sequences of 11 to 15 coins. Thus, the weakly dominating option is at 

least as good as the alternative [7]. A brute-force method was used to determine, which coins 

to remove without changing the average objective value of the remainder. We used two levels 

of steepness to examine the potential effect of valence abruptness. Two levels of variance 

were used to obscure the underlying average profile. Thus, the sequences did never proceed 

monotonically along the temporal profile; for the wider distribution of obfuscation noise (Fig. 

S1 top panels) the underlying average temporal profile was very unclear, while for the 

narrower distribution (Fig. S1 bottom panels) it was somewhat easier. In each version of the 

experiment, two control conditions used: 1) a decreasing and an increasing sequence with the 

same number of coins (11-19) and 2) a short (11-15 coins) flat sequence versus a long (15-19 

coins) flat sequence (Fig. S1g-h). Since each trial used a different implementation of the 

average profile, the CS was only used to indicate the contents of an option within one trial. 

 

Experiment 2a used 4 pairs of experimental profiles with conflicting features and two control 

conditions with univariate features. They included 6 pairs of sequences of between 11 and 19 



coins, and each condition was repeated 16 times. The four main conditions included long (15-

19 coins) decreasing sequences in competition with short (11-15 coins) increasing sequences 

(Fig. S1a-d). Eight subjects completed 16 repetitions of each condition drawn without 

replacement from the profiles illustrated in Fig. S1. Experiment 2b used 4 pairs of 

experimental profiles with the 2 surface features objective value and temporal contrast 

defined in a 2×2 factorial way, and the two control conditions with univariate surface 

features. They included 6 pairs of sequences of between 11 and 19 coins, and each condition 

was repeated 18 times. The four main conditions included long (15-19 coins) and short (11-

15 coins) sequences (Fig. S1c-f). A decreasing sequence was in competition with an 

increasing sequence and either could be long while the other was short. Thirty-three subjects 

completed 18 repetitions of each condition drawn without replacement from the profiles 

illustrated in Fig. S1.  

 

The temporal profiles were composed by scaling a sigmoid function to first generate a 

decreasing reference profile: 𝑄! = 𝐼 + (𝐹 − 𝐼) 1+ exp 𝑠 𝑛 − 𝑁/2 !!
 with N elements, 

initial scale I and final scale F. The temporal profiles were then composed by calculating 

individual obfuscated magnitudes, 𝑚! = 𝑄! + 𝑂 where the obfuscation 𝑂 ∈ 𝑁 0, 𝑐!  was 

pseudo-randomized so that the average was the reference profile. Obfuscation was used to 

make less obvious the underlying average temporal profile. Increasing profiles were 

generated by inverting the sequence along the temporal dimension, and dominated 

alternatives to each profile were generated by removing elements from the longer profile. The 

values in Table S2 were used to generate the profiles shown in Fig. S1. 

 

Statistics	  and	  modelling	  

Experiment 1 

To test the predictive leverage of simple proxies for decision value, we used multiple logistic 

regression on the preference data P: 

log
𝑃

1− 𝑃 = 𝐵×𝑅 

The regressor 𝑅 satisfies 𝐸 = 𝑅×𝑄, where  𝐸 = [𝜖!"#$  𝜖!"#$%] is evidence calculated 

according to the proxies 𝜖 = log  (𝑥! 𝑥!), where 𝑥! is perceived value (mean or proxy) of 

option I ∈ {A;B}, and Q is the modified Gram-Schmidt orthogonalization matrix [8]. We first 

fitted B for the proxies initial and final values (Fig. 3b top). Next, to enable analysis of the 



distribution of specific predictive leverage of coin position on preference for sequences of 

varying duration, we resampled all sequences to the maximum number of coins by linear 

interpolation. We then fitted B to fixed-effects models in which 𝜖!"#$% was characterized by 

the perceived values of each element in the resampled sequences (Fig. 3b bottom). Note that 

this approach cannot separate effects related to correlation between the proxies; it only 

removes the effect of mean value. Thus, each slope estimate indicates the predictive leverage 

of coin position for the residual.  

 

Experiment 2 

There were no effects of the steepness manipulations in Exp. 2a, so we restricted the 

subsequent analyses to the effects of biases and integration decay on dominated choice 

behaviour. One subject was excluded from the statistical analysis in Exp. 2b. For this 

participant, performance was at chance level throughout with no systematic preference for 

positive or negative contrasts or biases for any observable feature. This behaviour indicates 

that he did not seem to participate in the experiment in any meaningful way, and for that 

reason it seems unlikely that performance scores or response time (RT) parallel cognitive 

involvement in the task. The average RT in the experimental conditions in Exp. 2b was 1.11s 

(std 0.28s), with no statistically significant differences between conditions. By comparison 

with the experimental conditions, RT was slightly longer in the control condition with equal 

contents (average 1.18s, t31 =3.0, p=0.0053) and similar in the flat control condition (average 

1.14s, t31 =1.1, p=0.29).  

 

The average dominated choice score in Exp. 2a was 0.43 (std 0.11) compared with 0.29 (std 

0.23) for the conflict conditions in Exp. 2b (t38 =1.64, p=0.11), while the average score for 

the increasing option in the control condition with equal contents in Exp. 2a was 0.78 (std 

0.16) compared with 0.60 (std 0.19) in Exp. 2b (t38 =2.44, p=0.02). Although it seemed that 

the participants in Exp. 2a were more impressed by the temporal profiles than in Exp. 2b, the 

difference in dominated choice score was not statistically significant. For the flat control 

conditions, the average dominated choice score was 0.21 (std 0.19) in Exp. 2a and 0.20 (std 

0.19) in Exp. 2b (t38 =0.15, p=0.88).  

 

We used a combination of nonlinear optimization algorithms implemented in MATLAB to 

estimate the parameters to each participant’s full data set over the trials of all conditions. 



First, the parameters of the individual value function were estimated using unconstrained 2-

norm minimization of the state error in the pre-experimental evaluation. Using these data, we 

analyzed the underlying noise in state estimate. Then, the perceived values of each sequence 

were calculated according to individual value functions and evidence was derived according 

to each model. The parameters of the generative model outlined above were fitted to the 

choice data to investigate effects of biases and decay on revealed preference for the coin 

sequences. We examined the involvement of bias for the first option (β1), bias for positive 

contrast (β+) and decay parameter (τ) using six separate models implementing decay and bias 

in a 2×3 factorial way [decay / no decay (τ) × no bias / primacy (β1) / positive contrasts (β+)]. 

All models included the inverse temperature (B) of the stochastic process, so in total the 

models had 1 – 3 free parameters (τ, β, B). For the sake of consistency all trials were included 

in all model fits. Because of the obfuscation noise, the flat control sequences had slight 

random slopes. We estimated the average slope in each trial and characterized the control 

trials according to the experienced slopes. We analysed Exp. 2a separately from Exp. 2b as 

the two versions of the experiment contained different sets of conditions with a higher 

prevalence of conflict trials in Exp. 2a than in Exp. 2b.  

 

For each subject, the six models were fitted (Fig. S4) and the involvement of the parameters 

in explaining choice behaviour was examined by testing the fitness of the models with 

Akaike and Bayesian Information Criteria. They both evaluate the cost of fit but they 

penalize the number of free parameters in different ways. For AIC, the null model (no decay, 

no bias) was the best model in 5 participants. The most successful model according to AIC 

was the bias-free leaky integrator (N = 13) followed by positive-contrast bias (N = 8). For 

BIC the most successful model was the null model (N = 14) followed by the bias-free leaky 

integrator (N = 12) (Fig. S5). Since the null model can only account for variance in non-

dominated choices, the question of which mechanism is best should pertain to the ability of 

the experimental models to account for dominated choices. Therefore, we may compare 

model fitness between the experimental models that are mechanistic candidates to capture 

variance related to violation of dominance. Within both information criteria, leaky integration 

and positive-contrast bias are the most successful experimental models. This result means 

that leaky integration of evidence and positive-contrast bias are the most likely individual 

strategies leading to violation of dominance. At the group level, group AIC and group BIC 

scores can be obtained by summing the scores across subject [9]. When the models are 



compared at the group level, the best model fitness was obtained for the bias-free leaky 

integrator (Table S4). 

 

Additional Analyses 

Separate models were implemented to analyse decision bias for the first option and bias for 

positive contrasts. The predictors indicating option order and their respective temporal 

contrasts are independent, and the associated biases from the primary analyses were 

uncorrelated (ρ2 =	  0.0052, p =	  0.699). Therefore, we tested a dual-bias model in which 

parameter estimates were obtained for primacy bias (β1) and positive contrasts (β+) by fitting 

the choice data (P) according to: logit 𝑃 = 𝐵 𝜖 + 𝑎!𝛽! + 𝑎!𝛽! , where 𝜖 is evidence as 

defined earlier and 𝑎! and 𝑎! are indicator functions for option primacy and positive 

contrasts, respectively. There was high correlation between parameter estimates obtained 

with the dual-bias model and the separate models for both primacy (ρ2 =	  0.87, p =	  3.5×10-14) 

and positive contrasts (ρ2 =	  0.97, p =	  8.5×10-24). In no case did the dual-bias model 

outperform any of the other models according to any criterion. 

 

In every trial, one of the options was weakly dominated by the alternative. Since the value 

function is non-linear, ambiguity in dominance relation was avoided by offering option 

alternatives composed of a coin sequence and a subset of that same sequence. Hence, in any 

trial the shorter option is dominated by the longer option regardless of the individual value 

function exponent κ. Thus, it is conceivable that it is not perceived value but rather state 

estimate that is discounted in the accumulation of evidence (although it is not immediately 

obvious how an internal representation of state would be divorced from its perceived value). 

To address this question, we re-fitted the parameters of the biasfree leaky integrator to the 

data using objective value in place of perceived value for all subjects. We analysed the 

difference in parameter estimates obtained with the simplified model that generally lead to a 

decrease in model fitness (Fig. S6). 

 

Response	  strategies	  

We interviewed the participants at the end of the experiments and asked them how they had 

approached the task. Most participants reported a tendency to rely on a strategy whereby 

coins were classified in two or three bins (e.g. small/medium/large) and the number of large 

coins became the main determinant of choice. Some participants also reported that the coins 



seemed to be presented along a temporal profile and they were mindful not to let it affect 

their judgment. No participant reported relying entirely on duration, option order or screen 

position. Thus, the participants appeared to operate analytically while trying to avoid 

contextual effects. In spite of these attitudes, a large number of choices revealed preference 

for the dominated option. This result suggests that the participants had no explicit access to 

the generative process underlying their choices. 
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Fig.	  S1	  Profiles	  of	  temporally	  extended	  outcomes	  in	  experiment	  2. 
 

 
 

Temporal profiles plotted as a function of (remaining) sequence length. Each panel illustrates 

a pair of average temporal profiles in solid lines and the standard deviation of the distinct 

profiles in shaded area underneath. In the top row, coins were drawn from a wide distribution 

around the average profiles making the expected value of the temporal contrasts opaque to 

the observer. In the bottom row, the distribution was narrower making it clearer whether an 

option primarily consisted of positive or negative contrasts. (a-d) Pairs of profiles are in 

conflict with regard to their presumed appeal: the longer sequence is decreasing (containing a 

succession of negative contrasts) while the shorter sequence is increasing (positive contrasts); 

(e-f) pairs of profiles are in concord in this respect. (g) Control condition consisting of flat 

sequences (long vs short). (h) Control condition consisting of primarily positive- vs negative-

contrast pairs with otherwise identical contents. In Exp. 2a, temporal profiles in conflict were 

tested for shallow and steep slopes and for clear and opaque temporal contrasts (panels a-d). 

Exp. 2b used a factorial design of positive vs negative contrasts and certain vs uncertain 

contrasts (panels c-f). The control conditions (panels g-h) were included in both versions of 

experiment 2. 
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Fig.	  S2	  Discount	  on	  incentive	  value	  over	  a	  range	  of	  decays	  and	  value	  function	  exponents.	  

 

 
 

Discount landscapes of incentive value under parameterization of decay, 𝜏 ∈ [1; 21], and 

value function exponent, 𝜅 ∈ 0.34; 1.00 , showing that the deficit incurred in incentive 

value is largest for small values of 𝜏 (indicating a steep decay) and for small value of 𝜅 

(indicating a more concave value function). (a) Discount compared to linear integration for 

the increasing profile in Fig. 2b, and (b) discount compared to linear integration for the 

decreasing profile. (c) Discount for the increasing profile, and (d) for the decreasing profile 

relative to linear integration. The difference between the discount surfaces for increasing and 

decreasing profiles determines the deficit in incentive value incurred by the difference in the 

temporal profiles between the two options in Fig. 2b. Thus, Fig. 2c shows panel d above 

relative to panel c above. 
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Fig.	  S3.	  Effects	  of	  opacity	  and	  evidence	  conflict	  on	  dominated	  choice	  

 

 
 

Effects of opacity and evidence conflict on dominated choice propensity (average +/- SEM) 

in Exp. 2b. (a) Repeated measures ANOVA: there was a main effect of evidence conflict 

(F1,31 = 19.8, p = 0.000104, ηp
2 = 0.39) and interaction with opacity (F1,31 = 6.7, p = 0.0145, 

ηp
2 = 0.18). (b) In the control conditions, dominated choice scores were significantly below 

chance; preference for the dominated shorter sequence was 0.2 (t31 = 8.94, p = 4.3×10-10), and 

preference for the decreasing sequence was 0.3987 (t31 = 2.97, p = 0.0057). 
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Fig.	  S4.	  Distribution	  of	  parameter	  estimates	  for	  all	  generative	  models	  and	  their	  

relationships	  with	  dominated	  choice	  score	  

	  

 
 

Distribution of parameter estimates for the six generative models and their relationships with 

dominated choice propensity in Exp. 2b. To the right are shown each model’s parameters: 

psychometric slope (inverse temperature, B), bias (β) and decay (τ). The relationship between 
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inverse temperature and dominated choice occurs because errors that are not caused by 

suboptimal integration are fewer in participants who are more sensitive to variation in 

evidence. This relationship is intrinsic to the structural effect of the parameter. By contrast, 

the relationship between decay and dominated choice indicates that the exponential filter is 

suitable for implementing suboptimal integration of evidence in participants who make many 

dominated choices. Cases in which the decay parameter converged to infinity are excluded in 

the calculation of the correlation coefficient (ρ). Histograms and scatter plots are colour-

coded according to the p-value for the null model fit (a), or according to the p-value for the 

improvement in model fit over the null-model (b-f); grey: p > 0.05; light blue p < 0.05; dark 

blue p < 0.01. (a) Null model with only inverse temperature. (b) Model with bias for primacy 

and (c) for positive contrast. (d) Biasfree decay model with suboptimal integrator, and decay 

models with bias for (e) primacy and (f) positive contrast. The generative model allows for 

testing the effect of any kind of bias such as geometric or chromatic surface features of the 

CS. No systematic involvement was found for spatial orientation or any other kind of 

indexical information relating to the CS. 

 



	  Fig.	  S5.	  Model	  evaluation	  in	  Experiment	  2b	  

 

 
 

The six generative models indicate the involvement of inverse temperature (B), biases for 

primacy (β1) and positive contrasts (β+) and decay (τ) in the observed choices. The boxes 

show model specification and the number of subjects (N) for whom it is the best model, tinted 

according to a hot colour map. (a) Model evaluation according to Akaike information 

criterion (AIC), and (b) Bayesian information criterion (BIC). BIC penalizes increase in 

parameter space more than AIC so none of the three-parameter models survive this criterion. 

The most successful two-parameter model is always the bias-free leaky integrator. 
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Fig.	  S6.	  Simplifying	  the	  biasfree	  leaky	  integrator	  

 

 
 

The cost in model fitness of removing individual value functions and the changes to 

parameter estimates for the simplified model. In some cases, removing variation in κ results 

in a very similar model (i.e. little change in slope and decay) in which cases there is little or 

no increase in AIC for the simplified model. When the reduced model results in a worse fit 

(increase in AIC), the reduced model is characterized by a decrease in the slope of the 

psychometric function and an increase in the decay parameter for the exponential filter: (a) 

Distribution of the increase in AIC. (b) Relation between individual value function exponents 

(κ) and the increase in AIC caused by its removal. (c) Relation between the increase in AIC 

and the associated change in psychometric fit. A decrease in slope means that variation in 

evidence less precisely predicts observed choices. (d) Relation between the increase in AIC 

and the associated change in decay parameter estimate. An increase in decay reflects a 

reduced capacity of the exponential filter to effectively adjust the evidence underlying 

violation of dominance. When the decay was infinite in both models, the difference in decay 

was taken as zero (grey dots); these cases were excluded in the estimation of the trend line. 
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Table	  S1.	  Model	  parameters	  

 
Symbol Parameter Relation 

𝐸 State   

𝜀! Sampling noise 𝜀! ∈ 𝑁 𝜇!,𝜎!!  

𝐸 State estimate 𝐸 = 𝐸 + 𝜀! 

𝑥	   Perceived value 𝑥 = 𝐾𝐸! 
𝜅	   Value function exponent  
𝐾	   Value function scaling constant  
n Sampling index for sequence of discrete state instances  

𝑥!	   Sequence of perceived values  

𝑦!	   Cumulative incentive value 𝑦! = (1− 𝑎)𝑦!!! + 𝑥! 
𝑎	   Recursive decay   
𝜏	   Leaky integration decay 𝜏 = −1 log  (1− 𝑎) 
𝑡	   Continuous time   
𝑥(𝑡)	   Episode of perceived value  
𝑦(𝑡)	   Cumulative incentive value 𝑑𝑦 𝑑𝑡 = 𝑥(𝑡)− 𝑤𝑦(𝑡) 
𝑤	   Immediacy of contrast on marginal incentive  
𝜏	   Leaky integration decay 𝜏 = 1 𝑤 
𝜌!	   Decision variable for option A relative to option B 𝜌! = 𝑦! 𝑦! 
𝜖!	   Evidence in favour of option A 𝜖! = −log 1 𝜌!  
𝑃!	   Preference for option A log 𝑃! 1− 𝑃! = 𝐵 𝜖! + 𝛽!   
𝐵	   Sensitivity to variation in evidence (inverse temperature) 𝐵!! = 𝐶 𝜎!! + 𝜎!!  
𝐶	   Logistic scaling constant 𝐶 = 3 𝜋 or 𝐶 = 1.702!! [3] 
𝛽!	   Decision bias in favour of option A 𝛽! = 𝜇! − 𝜇! 
𝜀!	   Decision noise option A 𝜀! ∈ 𝑁 𝜇!,𝜎!!  
𝜀!	   Decision noise option B 𝜀! ∈ 𝑁 𝜇!,𝜎!!  
 

Model parameters and variables and their relation to other variables and parameters. The first 

section summarizes the perceived value function, the two middle sections summarize 

incentive value in the discrete and continuous domain, respectively, and the bottom section 

summarizes the decision model. 

 

 



Table	  S2.	  Specification	  of	  the	  utility	  profiles	  in	  Experiment	  2	  
 
Experiment N  I  F  s  c  M 
2a 19  0.3  0.7  [0.5 2.0]  [0.05 0.15]  16 
2b 19  0.3  0.7  2  [0.05 0.15]  18 

 
Parametric specification of M different utility profiles in the second version of the monetary 

venture games (Experiment 2). N is the number of coins in the dominating reference 

sequence, and I and F are the initial and final scale values, respectively. The parameters s and 

c specify steepness of the temporal profile and variance in the obfuscation noise.  

 

 

Table	  S3.	  Individual	  data	  for	  the	  subjects	  in	  Experiment	  2a	  

 
 1  2  3  4  5  6  7  8  

Score 0.63  0.63  0.46  0.55  0.75  0.45  0.66  0.46  

κ 0.61  0.40  0.44      0.46      0.69      0.46  0.59  0.41  

β1 -0.09  0.12  0.37  0.48  0.10  -1.75  0.00  -0.11  

β+ 0.19 * 0.34 *** 2.00 *** 0.55 *** 0.16 ** 0.67 *** 0.07  0.59 *** 

τ 23.1 ** 13.9 *** 4.4 ** 11.1 *** 37.7 ** 8.8 *** Inf  8.5 *** 

 
 
Individual parameter estimates for the subjects in Experiment 2a indicate that bias for 

positive contrast (β+) and decay (τ) parameters compete for the variance underlying 

dominated choices, whereas little involvement remains for bias caused by the primacy effect 

(β1). * p<0.05; ** p<0.01; *** p<0.001. Choice frequency for the dominating options (Score) 

and individual value function exponent (κ) are shown for each subject. 

 

 

Table	  S4.	  Group	  comparison	  in	  Experiment	  2b	  

 
 Bias Decay 
Criterion AIC BIC AIC BIC 
None 3164 3247 2991 3156 
Primacy 3167 3332 2996 3243 
Positive contrasts 2995 3160 3006 3254 

 

Model comparison at the group level in Experiment 2b according to Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC). For both criteria, the leaky 

integrator offers the best model fitness. 

	  


