
The Pervasiveness of Circadian Oscillations

SUPPLEMENTARY MATERIAL

NUMBER OF EARTH REVOLUTIONS SINCE THE
ORIGIN OF LIFE
To interpret the pervasiveness and plasticity of circadian oscillati-
ons, we need a rough estimate of the number of times the Earth has
rotated on its axis since the origin of life. A quick estimate provides
a figure of over one trillion times (3.5 x 109 x 365 = 1.3 x 1012).
The exact number is even larger and close to two trillions because
the Earth is constantly losing angular velocity and rotational energy
through a process called tidal acceleration. This process leads to a
slow lengthening of the day–for instance, 620 million years ago a
day had only about 21.9±0.4 hours, providing further evidence for
the plasticity of the period of circadian rhythms during evolution.

CIRCADIAN ANALYSES
The circadian analyses were conducted using JTK CYCLE (Hughes
et al., 2010), a program implemented in R that can be used to
determine cycling events in gene expression and other time series.
A gene was considered circadian, if at least one of its transcripts
was found to be circadian by JTK CYCLE. In brief, this algorithm
characterizes samples as rhythmic or nonrhythmic using a nonpa-
rametric method based on a combination of the JonckheereTerpstra
test for monotonic ordering and Kendall’s τ test for association of
measured quantities. JTK CYCLE has been reported to be faster
and more accurate than other methods, such as COSOPT (Straume,
2004). JTK CYCLE handles multiple hypothesis testing in two
ways. For each time series, JTK CYCLE produces both p-values
and q values. In addition, as stated in Hughes et al. (2010) (page
373) “Each minimal p-value is Bonferronia adjusted for multiple
testing and consequently, the adjusted minimal p-values reported by
JTK-CYCLE are uniformly conservative, i.e., they are never lower
than the empirical p-values (Suppl. Fig. S1). ”. For circadian analy-
ses, JTK CYCLE is used with parameters set to a period of 24h
with typical default values of q = 0.05 and p = 0.05. The q value
can be adjusted depending on the number of measurements availa-
ble. Here, for robustness testing, we also varied the p-value cutoff
by repeating the entire transcriptome and metabolome analyses at
p = 0.05, p = 0.01, and p = 0.005. In combination, these analyses
show that the main result is robust: a significant fraction of the tran-
scriptome and the metabolome is capable of circadian oscillations
under at least one set of conditions.

ANALYSES OF TRANSCRIPTOMES AND
METABOLOMES
Transcriptomic and metabolomic datasets analyzed in this paper
are listed in Supplementary Table S.1. Pairwise comparisons of the
circadian transcriptomes across experiments carried on liver only
(10 experiments) are given in Figure S.1. Pairwise comparison of the
circadian transcriptomes, determined with a more stringent circa-
dian p-value of 0.01, across all 18 experiments are given in Figure

S.2. Pairwise comparisons of the circadian metabolomes, determi-
ned with a more stringent circadian p-value of 0.01, across all 10
experiments are given in Figure S.3. Pairwise comparison of the
circadian transcriptomes, determined with an even more stringent
circadian p-value of 0.005, across all 18 experiments are given in
Figure S.4. Pairwise comparisons of the circadian metabolomes,
determined with an even more stringent circadian p-value of 0.005,
across all 10 experiments are given in Figure S.5.
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Table S.1. List of transcriptomic and metabolomic datasets analyzed.

Tissue/Condition Strain Transcriptome Metabolome Reference

Aorta unknown Yes No Rudic et al, 2004
Gut Normal-Chow C57BL/6J No Yes Tognini, Murakami et al, 2014
Gut Ketogenic-Diet C57BL/6J No Yes Tognini, Murakami et al, 2014
Liver C57BL/6J Yes No Hughes et al, 2009
Liver C57BL/6J Yes No Panda et al, 2002
Liver Clock WT C57BL/6J Yes No Miller et al, 2007
Liver Clock Mutant C57BL/6J Clock homozygous mutant Yes No Miller et al, 2007
Liver Normal-Chow C57BL/6J Yes Yes Eckel-Mahan et al, 2013
Liver High-Fat Diet C57BL/6J Yes Yes Eckel-Mahan et al, 2013
Liver Sirt1 WT Mostly C57/B6 with some Black Swiss Yes Yes Masri et al, 2014
Liver Sirt1 KO Mostly C57/B6 with some Black Swiss - Sirt1 kno-

ckout
Yes Yes Masri et al, 2014

Liver Sirt6 WT Mixed C57/B6 and Black Swiss Yes Yes Masri et al, 2014
Liver Sirt6 KO Mixed C57/B6 and Black Swiss - Sirt6 knockout Yes Yes Masri et al, 2014
Muscle Bmal1 WT Cre-negative littermates from cross between C57BL/6

with floxed Bmal1 and C57BL/6 mouse carrying a
Cre recombinase transgene.

Yes Yes Dyar et al, 2013

Muscle Bmal1 KO Cross between C57BL/6 with floxed Bmal1 and
C57BL/6 mouse carrying a Cre recombinase tran-
sgene.

Yes Yes Dyar et al, 2013

NIH3T3 C57BL/6J Yes No Hughes et al, 2009
Serum Normal-Chow C57BL/6J No Yes Abbondante et al, 2014
Serum High-Fat Diet C57BL/6J No Yes Abbondante et al, 2014
SCN C57BL/6J Yes No Panda et al, 2002
Skeletal Muscle C57BL/6J Yes No Andrews et al, 2010
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Fig. S.1. Pairwise comparison matrix across all experiments performed on liver tissue only. The numbers correspond to the number of protein coding
genes with at least one circadian transcript (p ≤ 0.05) that are common to both perturbations (i.e. |A ∩B|). The color intensity corresponds to the Tanimoto-
Jaccard index (|A ∩B|/|A ∪B|). In total, there are 11318 (∼56%) protein coding genes that can produce circadian transcripts in at least one condition.
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Fig. S.2. Pairwise comparison matrix across 18 transcriptomic experiments with more stringent oscillatory cutoff. The numbers correspond to the
number of protein coding genes with at least one circadian transcript (p ≤ 0.01) that are common to both tissues/conditions (i.e. |A∩B|). The color intensity
corresponds to the Tanimoto-Jaccard index (|A ∩B|/|A ∪B|). In total, there are 8662 (∼43%) protein coding genes with cam produce circadian transcripts
in at least one tissue or condition.
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Fig. S.3. Pairwise comparison matrix across 10 metabolomic experiments with more stringent oscillatory cutoff. The numbers correspond to the number
of oscillating metabolites (p ≤ 0.01) that are common to both tissues/conditions (i.e. |A∩B|). The color intensity corresponds to the Tanimoto-Jaccard index
(|A ∩B|/|A ∪B|). In total, there are 300 (∼54%) measured metabolites that oscillate in at least one tissue or condition in a circadian manner.
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Fig. S.4. Pairwise comparison matrix across 18 transcriptomic experiments with even more stringent oscillatory cutoff. The numbers correspond to
the number of protein coding genes with at least one circadian transcript (p ≤ 0.005) that are common to both tissues/conditions (i.e. |A ∩ B|). The color
intensity corresponds to the Tanimoto-Jaccard index (|A ∩ B|/|A ∪ B|). In total, there are 7877 (∼39%) protein coding genes that can produce circadian
transcripts in at least one tissue or condition.
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Fig. S.5. Pairwise comparison matrix across 10 metabolomic experiments with more stringent oscillatory cutoff. The numbers correspond to the number
of oscillating metabolites (p ≤ 0.005) that are common to both tissues/conditions (i.e. |A ∩ B|). The color intensity corresponds to the Tanimoto-Jaccard
index (|A ∩B|/|A ∪B|). In total, there are 270 (∼47%) measured metabolites that oscillate in at least one tissue or condition in a circadian manner.
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NETWORK ANALYSIS
Using CircadiOmics, we constructed a network containing only
regulatory (transcriptional) edges and protein-protein interaction
edges to get rough estimates of important network properties, in
particular the number of loops of various types and the centrality
of the clock hub. The network consisted of 21826 genes/proteins,
with 120988 edges. There were 114493 regulatory edges and 6495
protein-protein interactions (only physical interactions were consi-
dered). The diameter of the network is 8. Regulatory edges are uni-
directional, while protein-protein interaction edges are considered
bi-directional.

The clock machinery is centrally located and capable of poten-
tially acting on a large fraction of the genome. We estima-
ted the network-distance between Clock or Bmal1 and all other
gene/proteins. We computed these on three different networks. First,
the network where the direction of the edges is ignored. Second,
the network with uni-directional regulatory edges and bi-directional
protein-protein interactions. And third, the network containing only
the uni-directional regulatory edges. In all cases, it can be seen in
Table S.2 that ∼10% of genes are one hop away from Clock/Bmal1
and ∼60-70% genes are two hops away.

Table S.2. Network distances from Clock/Bmal1.

Distance # Gens in undire-
cted network

# Genes in dire-
cted network with
PPI

# Genes in dire-
cted network
without PPI

1 2300 2293 2286
2 15249 13744 13339
3 758 1750 1035
4 17 437 50
5 1 2 -

In general, molecular species in isolation do not oscillate. Oscil-
lations require directed loops of interactions (cycles). Cycles were
counted by enumerating all paths, with no repeated nodes, which
start and end at Clock/Bmal1. The numbers are given in Table S.3.

Table S.3. Number of cycles containing Clock or Bmal1.

Cycle length # Cycles with Clock # Cycles with Bmal1

2 10 14
3 73 90
4 1007 1097
5 15512 15641
6 260973 253615
7 4570219 4324732

FORMAL MODELS OF COUPLED OSCILLATORS
Detailed mathematical models for specific molecular oscillators
have been developed (Goldbeter, 1995, 1997). While useful, these
are not capable of providing a system view of circadian oscilla-
tions, or making system level predictions. Furthermore, even the
basic clock is not fully understood in all its biochemical details. For
example, many details of the composition and mode of action of the
inhibiting complex containing the CRY and PER proteins remain to
be elucidated.

Thus one may want to consider more global models of coupled
oscillators. Arrays of coupled-oscillators have been studied in phy-
sics and other areas (Baldi and Meir, 1990; Strogatz, 2000; Goel
and Ermentrout, 2002; Brandt et al., 2006). A fairly general class of
models can be written in the form

∂θi
∂t

= ωi +K
n∑
i

fi(θi, θj) (1)

where θi is the phase of the i-th oscillator, ωi represents its freque-
ncy, and fi is the coupling function. For instance, in the well-studied
Kuramoto model the coupling is given by f(θi, θj) = sin(θj −θi).
However such a model seem too simple and homogeneous in order
to properly model the molecular oscillators described in this paper
which are not homogeneous nor regularly organized on some kind
of lattice.

Other relatively simple models could use Boolean functions or
neural networks with Hill-like functions (Baldi and Atiya, 1989;
Scheper et al., 1999; Akman et al., 2012) to model the state or
concentration of a molecular species as a function of its interacting
neighbors. For instance, the concentration yi of species i could be a
non-linear function of its activation xi with

yi = f(xi) =
1

1 + ce−λxi
and

dxi

dt
=

−xi

τi
+
∑
j

wijyj (2)

here τi is the decay time-constant of species i and wij is a matrix of
weights capturing the interactions with neighboring species. How-
ever it is not clear whether enough data is available to fit the
parameters of such models reliably, notwithstanding that many
molecular mechanisms are far more subtle than Equation 2.
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