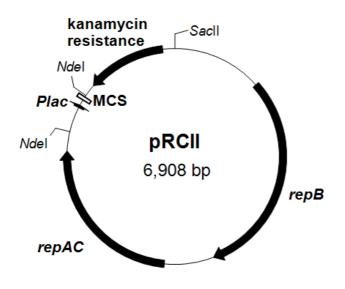
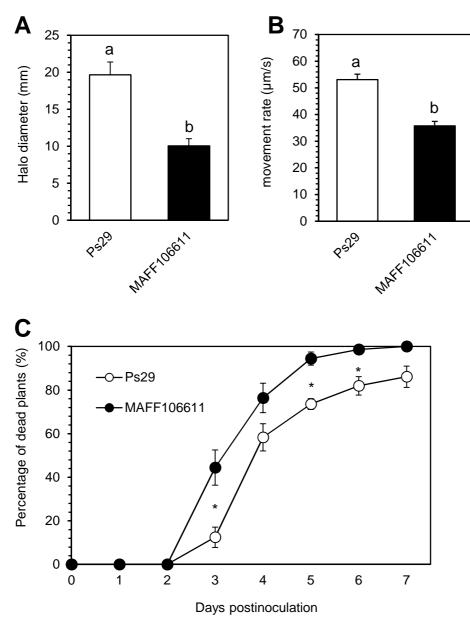
<i>mcp</i> No.	Gene ^a Mu	ıtant strain ^b	Number of amino acids		Identity (%) ^c	Accession No.
			GMI1000	Ps29		
01	RSc0606	DPS01	617	617	100	LC005226
02	RSc1155	DPS02	629	629	99	LC005227
03	RSc1156	DPS03	600	600	99	LC005228
04	RSc1234	DPS04	514	514	100	LC005229
05	RSc1460	DPS05	513	513	99	LC005230
06	RSc1894	DPS06	535	535	99	LC005231
07	RSc1950	DPS07	329	329	99	LC005232
08	RSc2799	DPS08	515	515	99	LC005233
09	RSc3136	DPS09	661	661	99	LC005234
10	RSc3307	DPS10	646	646	99	LC005235
11	RSc3412 (cheD4)	DPS11	515	515	99	LC005236
12	RSc0671 (pilJ)	DPS12	743	743	99	LC005237
13	RSp0255	DPS13	529	529	99	LC005238
14	RSp0507 (cheD1)	DPS14	600	600	99	LC005239
15	RSp0840	DPS15	518	518	99	LC005240
16	RSp0303 (cheD2)	DPS16	515	515	99	LC005241
17	RSp1027	DPS17	524	524	99	LC005242
18	RSp1099	DPS18	513	513	100	LC005243
19	RSp1209	DPS19	524	524	99	LC005244
20	RSp1224 (aer)	DPS20	514	514	99	LC005245
21	RSp1363	DPS21	543	543	99	LC005246
22	RSp1406 (cheD3)	DPS22	608	608	99	LC005247

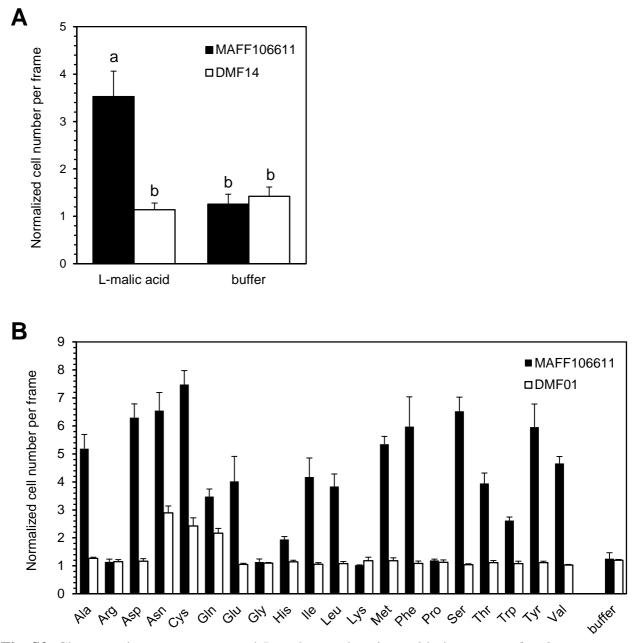
 Table S1
 List of 22 R. pseudosolanacearum Ps29 mcp genes and their deletion mutants

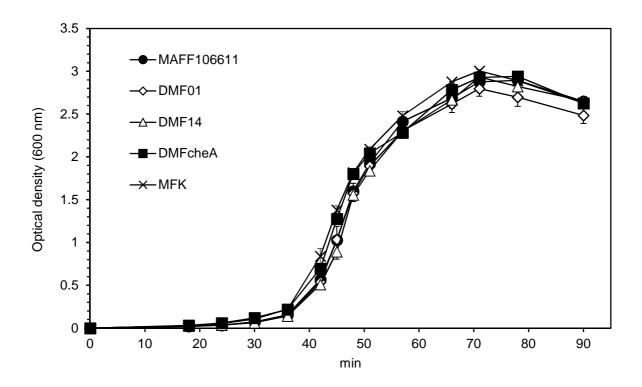

^a Gene name designations in parentheses indicate gene name based on the annotated GMI1000 genome sequence.

^b Strain names of *R. pseudosolanacearum* Ps29 mcp deletion mutants.


^c Identity between amino acid sequences of GMI1000 and Ps29 orthologs.

Strain	Accession number			
	Chromosome	Mega plasmid		
. solanacearum CFBP2957	NC_014307.1	NC_014309.1		
solanacearum Po82	NC_0.17574.1	NC_017575.1		
pseudosolanacearum GMI1000	NC_003295.1	NC_003296.1		
pseudosolanacearum FQY4	NC_020799.1	NC_021745.1		
pseudosolanacearum CMR15	NC_017559.1	NC_017589.1		
syzygii subsp. indonesiensis PSI07	FP885906.2	FP885891.2		


 Table S2 Accession numbers of genome sequences of the R. solanacearum species complex


Fig. S1 Physical map of pRCII. The region between *Sac*II and *Nde*I including *repABC* was amplified from pKZ27. The region of kanamycin resistant gene was amplified from pUC4K. The region between *Nde*I sites including *lac* promoter and multiple cloning site (MCS) was amplified from pUCP18.

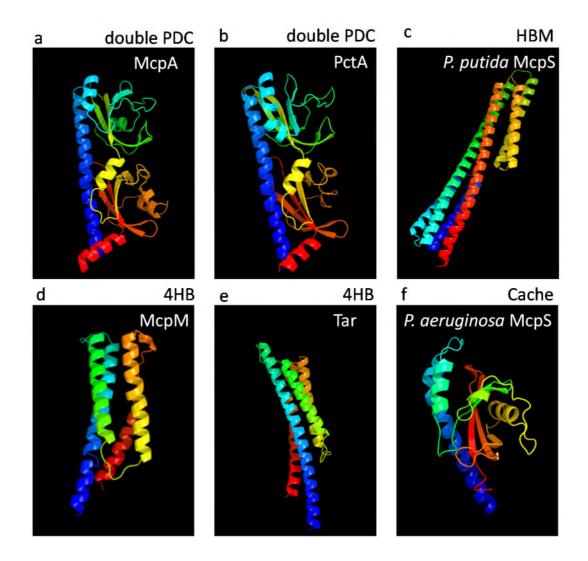

Fig. S2 Motility and virulence of *R. pseudosolanacearum* Ps29 and MAFF106611. **A**, Swimming assay in semi-solid agar plates. Bacterial cells were inoculated into semi-solid agar plates containing 1 g/l Tryptone, 5 g/l KCl, and 3 g/l agarose and incubated at 28°C. After 3 days, halo diameter was measured. Vertical bars represent the standard errors of measurements done in six independent experiments. Different letters indicate significant difference (Student's *t*-test, *P* < 0.05). **B**, Microscope observation. Bacterial cells were observed by microscope and movement rate of cells were measured. Vertical bars represent the standard errors of measurements done about 30 cells in three independent experiments. Different letters indicate significant difference (Student's *t*-test, *P* < 0.05). **C**, Virulence assay by root-dip inoculation. Bacterial cells were inoculated 7-day-old wounded tomato seedling by dipping root-tip into cell suspension. In each experiment, 8 tomato seedlings were examined and counted to calculate the percentage of dead plants. Means and standard errors were calculated from nine independent experiments. Asterisks indicate significant difference (Student's *t*-test, *P* < 0.05).

Fig. S3 Chemotactic responses toward L-malate and amino acids by *R. pseudosolanacearum* MAFF106611 wild-type strain and mutants. Bacterial cells were grown for 20 h in RSM medium. Videotape frames were analyzed at the initiation of observation and 2 min after the initiation. Normalized cell numbers were calculated by dividing the number of bacterial cells at 2 min by that at the initiation of the observation. Buffer indicates 10 mM HEPES buffer as negative control. **A**, Chemotactic responses to 5 mM L-malate by *R. pseudosolanacearum* MAFF106611 wild-type strain and *mcpM* deletion mutant (DMF14). Different letters indicate significant difference (Student's *t*-test, *P* < 0.05). **B**, Chemotactic responses to 5 mM naturally-occurring amino acids by *R. pseudosolanacearum* MAFF106611 wild-type strain and *mcpA* deletion mutant (DMF01). There are significant differences in chemotaxis toward amino acids other than Arg, Gly, Lys, and Pro between wild-type strain and DMF01 (Student's *t*-test, *P* < 0.05). Vertical bars represent the standard errors of measurements done at least triplicate.

Fig. S4 Growth of *R. pseudosolanacearum* MAFF106611 wild-type strain and mutants in PNS medium containing 5 g/l glucose. Wild-type strain MAFF106611, *mcpA* deletion mutant (DMF01), *mcpM* deletion mutant (DMF14), *cheA* deletion mutant (DMFcheA), and kanamycin-resistant strain (MFK) were tested. Vertical bars represent the standard errors of measurements done in triplicate. There were no significant differences in growth between wild-type strain and mutants (Student's *t*-test, P < 0.05).

Fig. S5 The predicted three-dimensional (3D) structures of LBDs of bacterial MCPs. Protein structure ribbon 3D models of (a) *R. pseudosolanacearum* Ps29 McpA, (b) *P. aeruginosa* PAO1 PctA, (c) *P. putida* KT2440 McpS, (d) *R. pseudosolanacearum* Ps29 McpM, (e) *E. coli* Tar, and (f) *P. aeruginosa* PAO1 McpS. 3D structures of MCP LBDs were predicted by using Phyre² algorithm (1) (Phyre2 sever: http:://www.sbg.bio.ac.uk/phyre2). Blue color, N-terminus; red color, C-terminus.

Reference

1. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc **10**:845-858.