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1 Quantum chemistry calculations

Rh4+ 4d5 electronic structure. To analyze the ground state and the nature of the valence d-d excitations in Li2RhO3, we
performed ab initio quantum chemistry (QC) calculations on a cluster consisting of one reference RhO6 octahedron plus three
nearest-neighbor (NN) RhO6 octahedra and 15 nearby Li ions. The surrounding solid-state matrix was modeled as a finite
array of point charges fitted to reproduce the crystal Madelung field in the cluster region. We used energy-consistent relativistic
pseudopotentials for Rh, with quadruple-zeta basis sets for the valence shells of the reference Rh ion and triple-zeta basis
functions for the Rh NN’s.1 The oxygen ligands of the central octahedron were represented by all-electron triple-zeta basis
sets.2 We also applied two Rh f polarization functions1, 2 for the central Rh site. For the Li+ NN’s we employed total-ion
effective potentials and a single s valence basis function.3 To obtain a clear picture on the effect of spin-orbit coupling (SOC)
at the central Rh4+ site and to keep the analysis of the spin-orbit coupled wave functions tractable, we cut off the magnetic
couplings with the adjacent Rh4+ ions by modeling the latter as closed-shell Pd4+ t6

2g species. Such a procedure is frequently
employed in QC studies on transition-metal systems, see, e.g., Refs. 4–6.

All computations were performed with the MOLPRO QC pacakge.7 In the complete-active-space self-consistent-field
(CASSCF) calculations, only the 4d t2g orbitals at the central Rh site and five electrons were included in the active space. All O
2p and Rh t2g electrons at the central octahedron were correlated in the subsequent multireference configuration interaction
(MRCI) calculations.

Magnetic couplings between two adjacent Rh4+ ions. The magnetic spectrum of two NN Rh4+ ions was obtained from
CASSCF and MRCI spin-orbit calculations on units of two edge-sharing RhO6 octahedra. To accurately describe the charge
distribution at sites in the immediate neighborhood, we also included in the actual cluster the closest 22 Li+ ions and the four
adjacent RhO6 octahedra around the reference [Rh2O10] fragment. As for the single-site calculations, we used energy-consistent
relativistic pseudopotentials with quadruple-zeta basis sets for the valence shells of the two reference Rh ions,1 all-electron
quintuple-zeta basis sets for the two bridging ligands2 and triple-zeta basis functions for the other O’s of the two reference
octahedra.2 Additionally, we employed two Rh f 1 and four O d polarization functions for the two central Rh ions and the two
bridging ligands,2 respectively. The NN Rh4+ sites were once again modeled as closed-shell Pd4+ t6

2g species.
Multiconfiguration reference wave functions were first generated by CASSCF calculations. For two NN RhO6 octahedra,

the finite set of Slater determinants was defined in the CASSCF treatment in terms of ten electrons (2×5) and six Rh t2g orbitals
(2×3). The SCF optimization was carried out for an average of the lowest nine singlet and the nine triplet states associated with
this manifold. All these 18 states entered the spin-orbit calculations, both at the CASSCF and MRCI levels. On top of the
CASSCF reference, the MRCI expansion additionally includes single and double excitations from the Rh t2g shells and the 2p
orbitals of the bridging ligands. A similar strategy of explicitly dealing only with selected groups of ligand orbitals was earlier
adopted in QC studies on both 3d8–11 and 5d4–6, 12, 13 compounds, with results in good agreement with the experiment.4, 6, 8–12

To separate the Rh 4d and O 2p valence orbitals into different groups, we used the Pipek-Mezey14 orbital localization module
available in MOLPRO.7
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2 Effective spin Hamiltonian
The effective magnetic Hamiltonian for two adjacent Rh sites is most conveniently written in a local reference frame {X,Y,Z}
with the Rh-Rh bond along the X axis and Z perpendicular to the Rh2O2 plaquette. For C2h point-group symmetry, it reads

H〈i j〉= S̃i ·

 J(0)+A 0 0
0 J(0)+B C
0 C J(0)− (A+B)

 · S̃ j . (1)

Due to the inversion center, the antisymmetric anisotropy does not show up here. Further, for the symmetric anisotropic term,
only one offdiagonal element is nonzero in C2h.

A straightforward diagonalization of H〈i j〉 yields the following eigenvalues and eigenfunctions:

ES = −3J(0)

4
, ΦS =

↑↓ − ↓↑√
2

,

E1 =
J(0)+A+

√
(A+2B)2 +4C2

4
, Φ1 =

↑↓+ ↓↑√
2

,

E2 =
J(0)+A−

√
(A+2B)2 +4C2

4
, Φ2 =

↑↑+ ↓↓√
2

,

E3 =
J(0)−2A

4
, Φ3 =

↑↑ − ↓↓√
2

. (2)

Here ΦS is the total spin singlet and Φ1−3 are combinations of the three triplet components. The latter are degenerate in the
plain Heisenberg model.

The above diagonalization procedure is equivalent with a rotation of the coordinate system {X,Y,Z} around X by an angle
α to a new frame {X′,Y′,Z′} in which the symmetric anisotropic exchange matrix is diagonal.15 {X′,Y′,Z′} are also referred to
as principal axes and the angle α is given by

tan(2α) =
2C

A+2B
. (3)

In C2h symmetry, the ΦS, Φ1, Φ2 and Φ3 spin-orbit wave functions transform according to the Ag, Bu, Bu and Au irreducible
representations, respectively. Since states Φ1 and Φ2 belong to the same irreducible representation Bu, they are in general

Figure 1. Local reference frames {Xb,Yb,Zb} and {xb,yb,zb} introduced for each of the three different types of NN Rh-Rh
links.
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admixed, i.e., in the reference frame {X,Y,Z} the corresponding eigenfunctions should be written as

Ψ1 = Φ1 cosα + iΦ2 sinα ,

Ψ2 = iΦ1 sinα +Φ2 cosα . (4)

The mixing parameter ξ = sinα is given by

iξ = 〈Φ2|Ψ1〉= 〈Φ1|Ψ2〉 (5)

and is explicitly obtained from the QC data.
For Rh-Rh links along the crystallographic b axis (labeled B1) the symmetry of a block of two edge-sharing octahedra

is C2h while for the other Rh-Rh links (labeled B2/B3) the Rh-O bonds on the Rh-O2-Rh plaquette have different lengths
and the symmetry is lowered to Ci.16 Since the QC calculations were actually performed in C1 symmetry, to determine the
nature of each of the lowest four spin-orbit states, we explicitly computed the dipole and quadrupole transition matrix elements
within that manifold. Standard selection rules and the nonzero dipole and quadrupole matrix elements in the QC outputs then
clearly indicate which state is which. We also carried out the transformation of the spin-orbit wave functions from the usual
{L1,ML1 ,L2,ML2 ,S,MS} basis in standard QC programs to the {S̃1,S̃2,M̃S1 ,M̃S2} basis. This allows the study of Φ1–Φ2 mixing
due to the offdiagonal Γyz and Γzx couplings. With such an analysis, we find that in Li2RhO3 the weight of Φ1 in Ψ1 (and of Φ2
in Ψ2) is 73% for links B1 and 94% for B2/B3.

Using Eqs. (2), (3) and (5) we obtain the effective coupling parameters of (1) as:

J(0) =
1
3
(E1 +E2 +E3)−ES,

A =
2
3
(E1 +E2)−

4
3

E3,

B =
1
2

[
−A± 2(E1−E2)√

1+η2

]
, with η =

2ξ
√

1−ξ 2

1−2ξ 2 ,

C =
η(A+2B)

2
. (6)

In the local Kitaev reference system {x,y,z}, that is rotated from the reference frame {X,Y,Z} by 45o about the Z = z axis
(see Fig.1 and Refs. 5, 17), the Hamiltonian given in expression (1) above is transformed into equation (1) of the main text. For
the latter, the exchange interaction parameters are given by :5

J = J(0)+
A+B

2
, K =−3

2
(A+B) , Γxy =

A−B
2
≡ D , Γzx =

−C√
2
, Γyz =

C√
2
. (7)

3 Lattice spin model, notations and ab initio effective couplings

For each type of Rh-Rh link, we used two different local axes frames, namely {xb,yb,zb} and {Xb,Yb,Zb}= { xb+yb√
2

, −xb+yb√
2

,zb},
where b∈{1,2,3} labels the type of bond.5 Let us choose our global frame to be {x,y,z}= {x1,y1,z1}. The relation between
the local axes {Xb,Yb,Zb} and the global frame is then the following (see Fig. 1):

{X1,Y1,Z1}= {
x+y√

2
,
−x+y√

2
,z}, {X2,Y2,Z2}= {

x− z√
2
,−x+ z√

2
,y}, {X3,Y3,Z3}= {

y+ z√
2
,
−y+ z√

2
,x}. (8)

We note that the system is invariant under two-fold rotations around the vector X1. This is why we must choose X3 to be
the rotated version of X2, i.e., C2 ·X2 = X3. If we choose the opposite direction for X3, then we must change the sign of the
coupling C.

Let us now write down the NN terms of the Hamiltonian for the three types of bonds b = 1,2,3. In the reference frame
{Xb,Yb,Zb},

H〈i j〉∈b = J(0)b Si ·S j +AbSXb
i SXb

j +BbSYb
i SYb

j − (Ab +Bb)S
Zb
i SZb

j +Cb(S
Yb
i SZb

j +SZb
i SYb

j )

= JbSi ·S j +KbSZb
i SZb

j +Db(S
Xb
i SXb

j −SYb
i SYb

j )+Cb(S
Yb
i SZb

j +SZb
i SYb

j ) , (9)
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where Jb = J(0)b + 1
2 (Ab +Bb), Kb =− 3

2 (Ab +Bb) and Db =
1
2 (Ab−Bb). For simplicity, we replace in the following Jb=1 by J,

Jb=2,3 by J′ and similarly for the remaining parameters. Eqs. (9) and (8) then yield

H〈i j〉∈b=1 = JSi ·S j +KSz
i S

z
j +D(Sx

i Sy
j +Sy

i Sx
j)+

C√
2
(Sy

i Sz
j +Sz

i S
y
j−Sx

i Sz
j−Sz

i S
x
j) ,

H〈i j〉∈b=2 = J′Si ·S j +K′Sy
i Sy

j +D′(−Sx
i Sz

j−Sz
i S

x
j)+

C′√
2
(−Sx

i Sy
j−Sy

i Sx
j−Sz

i S
y
j−Sy

i Sz
j) ,

H〈i j〉∈b=3 = J′Si ·S j +K′Sx
i Sx

j +D′(Sy
i Sz

j +Sz
i S

y
j)+

C′√
2
(−Sx

i Sy
j−Sy

i Sx
j +Sx

i Sz
j +Sz

i S
x
j) ,

where D = A−B
2 and D′ = A′−B′

2 . With the conventions introduced in Fig. 1, the spin Hamiltonian now reads

H = ∑
R

J SR,1 ·SR,2 +K Sz
R,1Sz

R,2 +D(Sx
R,1Sy

R,2 +Sy
R,1Sx

R,2)

+
C√

2
(Sy

R,1Sz
R,2 +Sz

R,1Sy
R,2−Sx

R,1Sz
R,2−Sz

R,1Sx
R,2)

+J′ SR,1 ·SR−b,2 +K′ Sy
R,1Sy

R−b,2 +D′(−Sx
R,1Sz

R−b,2−Sz
R,1Sx

R−b,2)

+
C′√

2
(−Sx

R,1Sy
R−b,2−Sy

R,1Sx
R−b,2−Sz

R,1Sy
R−b,2−Sy

R,1Sz
R−b,2)

+J′ SR,1 ·SR+a−b,2 +K′ Sx
R,1Sx

R+a−b,2 +D′(Sy
R,1Sz

R+a−b,2 +Sz
R,1Sy

R+a−b,2)

+
C′√

2
(−Sx

R,1Sy
R+a−b,2−Sy

R,1Sx
R+a−b,2 +Sx

R,1Sz
R+a−b,2 +Sz

R,1Sx
R+a−b,2)

+J2 SR,1 · (SR+a,1 +SR+b,1 +SR+a−b,1)+ J2 SR,2 · (SR+a,2 +SR+b,2 +SR+a−b,2)

+J3 SR,1 · (SR+a,2 +SR−a,2 +SR+a−2b,2) , (10)

where R = na+mb labels the unit cells and j∈{1,2} labels the sublattice index.
The numerical values of the above coupling parameters, as found by ab initio multireference configuration-interaction

(MRCI) calculations, are (in units of meV) :

Bond type b J(0)b Ab Bb Cb Jb = J(0)b + Ab+Bb
2 Kb =− 3

2 (Ab +Bb) Γb
xy =

A−B
2 Γb

zx =−Γb
yz

1 −11.2 −0.33 2.2 4.0 −10.2 −2.9 −1.3 2.8
2 −1.5 7.5 0.30 2.2 2.4 −11.7 +3.6 1.6
3 −1.5 7.5 0.30 2.2 2.4 −11.7 +3.6 1.6

For completeness, we also provide the coupling parameters as found by spin-orbit CASSCF calculations (in units of meV) :

Bond type b J(0)b Ab Bb Cb Jb = J(0)b + Ab+Bb
2 Kb =− 3

2 (Ab +Bb) Γb
xy =

Ab−Bb
2 Γb

zx =−Γb
yz

B1(b = 1) −14.7 −0.6 0.44 −2.3 −14.8 0.24 −0.52 −1.6
B2(b = 2) −3.5 4.2 −1.2 1.2 −2.2 −4.5 +2.7 0.86
B3(b = 3) −3.5 4.2 −1.2 1.2 −2.2 −4.5 +2.7 0.86
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