Multisource Synergistic Electrocatalytic Oxidation Effect of Strongly Coupled PdM (M=Sn, Pb) /N-doped Graphene Nanocomposite on Small Organic Molecules

Peng Wu^a, Yiyin Huang^a, Longtian Kang^a, Maoxiang Wu^a, Yaobing Wang^{a,*}

^a State Key Laboratory of Structural Chemistry; Key Laboratory of design and assembly of functional nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, 350002, P. R. China. E-mail: <u>wangyb@fjirsm.ac.cn</u>

1

Figure S1. XRD patterns of Pd/G, Pd/NG, PdSn(8:4)/NG and PdSn(8:4)/NG.

Figure S2. EELS mappings of the PdSn/NG sample showing the distributions of C, N, Pd and Sn.

Figure S3. XPS spectrum of Pd/G, Pd/NG, PdSn/G and PdSn/NG in Pd 3d region.

BEs/eV	Pd3d _{5/2} [Pd(]]): Pd(0)] ratio	Pd3d _{3/2} [Pd(Ⅱ):Pd(0)] ratio
Pd/G	0.54:1	0.54:1
Pd/NG	0.49:1	0.50:1
PdSn/G	0.40:1	0.43:1
PdSn/NG	0.40:1	0.41:1

Table S1. The ratios between bivalent species and metallic Pd.

Table S2. The peak of XPS spectrum in Pd 3d region				
BEs/eV	Pd3d _{5/2}	$Pd3d_{3/2}$		
Pd/G	335.8	341.0		
Pd/NG	335.7	340.9		
PdSn/G	335.7	340.8		
PdSn/NG	335.5	340.7		

Table S3. The peak of XPS spectrum in Sn 3d region

BEs/eV	Sn3d _{5/2}	Sn3d _{3/2}
PdSn/G	486.6	495.1
PdSn/NG	487.0	495.4

Figure S4. Cyclic voltammograms of PdSn/NG with different Pd/Sn atomic ratios catalysts in the 1 M KOH + 0.5 M (CH₂OH)₂ solution. Scan rate: 50 mV s⁻¹.

Figure S5. Cyclic voltammograms of Pd/G, Pd/NG, PdSn(2:1)/G and PdSn(2:1)/NG in the 1 M KOH solution. Scan rate: 50 mV s⁻¹.

Figure S6. Electrochemical impedance spectra in 1 M KOH + 0.5 M (CH₂OH)₂ solution at -0.15 V. The amplitude of the modulation potential is 5 mV. The frequency ranged from 100 kHz to 100 mHz and the equivalent circuit used to fit the impedance spectra.

Figure S7. Tafel plots of the as-prepared catalysts were performed at the scan rate of 2 mV s^{-1} in 1 M KOH + 0.5 M (CH₂OH)₂ solution.

Figure S8. Cyclic voltammograms of Pd/G, Pd/NG, PdSn/G and PdSn/NG in the 1 M $KOH + 0.5 \text{ M CH}_3OH$ solution. Scan rate: 50 mV s⁻¹.

Figure S9. Cyclic voltammograms of Pd/G, Pd/NG, PdSn/G and PdSn/NG in the 1 M KOH + 0.5 M C_2H_5OH solution. Scan rate: 50 mV s⁻¹.

Figure S10. Cyclic voltammograms of Pd/G, Pd/NG, PdSn/G and PdSn/NG in the 1 M KOH + 0.5 M (CH₂OH)₂ solution. Scan rate: 50 mV s⁻¹.

Figure S11. Cyclic voltammograms of Pd/G, Pd/NG, PdPb(2:1)/G and PdPb(2:1)/NG in the 1 M KOH solution. Scan rate: 50 mV s⁻¹.

Figure S12. Cyclic voltammograms of Pd/G, Pd/NG, PdPb/G and PdPb/NG in the 1 M KOH + 0.5 M CH₃OH solution. Scan rate: 50 mV s⁻¹.

Figure S13. Cyclic voltammograms of Pd/G, Pd/NG, PdPb/G and PdPb/NG in the 1 M KOH + 0.5 M C_2H_5OH solution. Scan rate: 50 mV s⁻¹.

Figure S14. Cyclic voltammograms of Pd/G, Pd/NG, PdPb/G and PdPb/NG in the 1 M KOH + 0.5 M (CH₂OH)₂ solution. Scan rate: 50 mV s⁻¹.