Supporting Information for:

Cortical composition hierarchy driven by spine proportion economical maximization or wire volume minimization

Jan Karbowski

Institute of Applied Mathematics and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland;

1

Email: jkarbowski@mimuw.edu.pl

Supporting Figure

Figure A. (see below)

Euclidean distance ED for heavy-tailed distributions of spine sizes as a function of exponent γ_2 for spine economical maximization. (A) ED for Log-logistic distribution with different values of β . (B) ED for Log-normal distribution with different values of σ . In both panels $\theta = 0.321 \ \mu m^3$.

THEORETICAL MODELS

Below, the details of calculaions are provided for the three principles considered in the main text.

1 Wire minimization principle.

1.1 The system of basic equations for optimal solution.

Explicit form of the fitness function.

The explicit dependence of the fitness function F_w on the three parameters x, y, \overline{u} is given as

$$F_w = \frac{rx+y}{\overline{u}^{\gamma_1}} + \lambda_1 \left(x+y+Pxy + \frac{a(Pxy)^{2/3}}{\overline{u}^{2/3}} + \frac{a(Pxy)^{5/3}}{\overline{u}^{2/3}} - 1 \right), \tag{1}$$

where the parameter $a = (3\pi^2/256)^{1/3} d_{as}^2 = 0.352 \; \mu {\rm m}^2.$

The basic optimal equations.

The optimal values of fractional volumes of axons and dendrites x, y, average spine volume \overline{u} , and the Lagrange multiplier λ_1 are found by differentiating the benefit-cost function F_w with respect to x, y, \overline{u} , and λ_1 , and requiring that

$$\partial F_w/\partial x = \partial F_w/\partial y = \partial F_w/\partial \overline{u} = \partial F_w/\partial \lambda_1 = 0,$$

which corresponds to a critical point of F_w . Consequently, we obtain the following set of four nonlinear equations:

$$r + \lambda_1 \overline{u}^{\gamma_1} \left(1 + Py + \frac{a}{3} \left(\frac{P^2 y^2}{x \overline{u}^2} \right)^{1/3} [2 + 5Pxy] \right) = 0, \tag{2}$$

$$1 + \lambda_1 \overline{u}^{\gamma_1} \left(1 + Px + \frac{a}{3} \left(\frac{P^2 x^2}{y \overline{u}^2} \right)^{1/3} [2 + 5Pxy] \right) = 0, \tag{3}$$

$$\gamma_1(rx+y) = \lambda_1 \overline{u}^{\gamma_1+1} \left[\frac{\partial P}{\partial \overline{u}} \left(xy + \frac{a(xy)^{2/3}}{3P^{1/3} \overline{u}^{2/3}} (2+5Pxy) \right) - \frac{2a(Pxy)^{2/3}}{3\overline{u}^{5/3}} (1+Pxy) \right]$$
(4)

and

$$x + y + Pxy + \frac{a(Pxy)^{2/3}}{\overline{u}^{2/3}} + \frac{a(Pxy)^{5/3}}{\overline{u}^{2/3}} = 1.$$
(5)

Reduction of dimensionality in the system of basic equations.

Next, we show that we can decrease the number of basic equations from 4 to 3. First, we can get rid of λ_1 , since it always appears in the first power. The parameter λ_1 can be determined from Eq. (3) and it reads:

$$\lambda_1 = -\frac{1}{\overline{u}^{\gamma_1} \left(1 + Px + \frac{a}{3} \left(\frac{P^2 x^2}{\overline{u}^2 y}\right)^{1/3} [2 + 5Pxy]\right)}.$$
(6)

Next, we can insert λ_1 into Eqs. (2) and (4). As a result we obtain Eqs. (29) and (30) in the main text.

1.2 Proof of the local minimum for optimal solution related to wire minimization.

Let us introduce the following notation: $x_1 \equiv x$, $x_2 \equiv y$, $x_3 \equiv \overline{u}$. Then the function F_w (Eq. 1) can be rewritten as:

$$F_w = \frac{rx_1 + x_2}{x_3^{\gamma_1}} + \lambda_1 g(x_1, x_2, x_3), \tag{7}$$

where $g(x_1, x_2, x_3)$ denotes the constraint term present in Eq. (1). Let us define partial derivatives: $F_{ij} = \partial^2 F_w / \partial x_i \partial x_j$ and $g_i = \partial g / \partial x_i$, which are determined at the critical point represented by optimal values of x_1, x_2, x_3 . Using these definitions we can construct a matrix called bordered Hessian for our constraint optimization problem as [2]:

$$\begin{bmatrix} 0 & g_1 & g_2 & g_3 \\ g_1 & F_{11} & F_{12} & F_{13} \\ g_2 & F_{21} & F_{22} & F_{23} \\ g_3 & F_{31} & F_{32} & F_{33} \end{bmatrix}$$

This is a symmetric matrix, i.e. $F_{ij} = F_{ji}$.

A sufficient condition for F_w to have a local minimum at the critical point represented by the optimal values x_1, x_2, x_3 is that two principal minors, i.e. determinants of the upper-left sub-matrices 3x3 (called D_1) and 4x4 (determinant of the entire bordered Hessian called D_2), have negative signs [2]. The explicit forms of these determinants are as follows:

$$D_1 = -g_1^2 F_{22} - g_2^2 F_{11} + g_1 g_2 (F_{12} + F_{21})$$
(8)

and

$$D_{2} = g_{1}^{2}(F_{23}^{2} - F_{22}F_{33}) + g_{2}^{2}(F_{13}^{2} - F_{11}F_{33})$$

$$+ g_{3}^{2}(F_{12}^{2} - F_{11}F_{22}) + 2g_{1}g_{2}(F_{12}F_{33} - F_{13}F_{23})$$

$$+ 2g_{1}g_{3}(F_{13}F_{22} - F_{12}F_{23}) + 2g_{2}g_{3}(F_{11}F_{23} - F_{12}F_{13})$$

$$(9)$$

Exact numerical values of the minors D_1 and D_2 are presented in Table A (below) together with the values of F_{ij} . These results indicate that indeed we have local minima at the critical points.

Spine size	heta	Bordered Hessian M							
distribution		F_{11}	F_{12}	F_{22}	F_{13}	F_{23}	F_{33}	D_1	D_2
Exponential	0.100 (ED)	0.117	-0.905	0.162	-0.196	-0.230	2.476	-5.529	-13.69
	0.100 (MD)	0.107	-0.890	0.174	-0.185	-0.236	2.433	-5.449	-13.25
	0.321 (ED)	0.031	-0.748	0.041	-0.020	-0.023	0.026	-3.365	-0.087
	0.321 (MD)	0.036	-0.764	0.036	-0.022	-0.022	0.026	-3.433	-0.090
Gamma (n=1)	0.100 (ED)	0.110	-1.045	0.156	-0.191	-0.227	3.205	-7.020	-22.49
	0.100 (MD)	0.074	-0.967	0.216	-0.146	-0.249	2.919	-6.579	-19.19
	0.321 (ED)	0.033	-0.843	0.045	-0.026	-0.031	0.082	-4.148	-0.341
	0.321 (MD)	0.037	-0.856	0.041	-0.028	-0.030	0.084	-4.211	-0.352
Gamma (n=2)	0.100 (ED)	0.112	-1.118	0.156	-0.201	-0.238	4.440	-7.925	-35.19
	0.100 (MD)	0.063	-0.993	0.254	-0.134	-0.269	3.813	-7.196	-27.42
	0.321 (ED)	0.036	-0.891	0.047	-0.031	-0.036	0.155	-4.585	-0.712
	0.321 (MD)	0.038	-0.901	0.045	-0.033	-0.035	0.157	-4.632	-0.727
Rayleigh	0.100 (ED)	0.117	-1.121	0.171	-0.219	-0.265	5.876	-8.101	-47.60
, ,	0.100 (MD)	0.063	-0.987	0.288	-0.141	-0.301	4.979	-7.327	-36.45
	0.321 (ED)	0.040	-0.890	0.052	-0.036	-0.042	0.199	-4.608	-0.918
	0.321 (MD)	0.042	-0.899	0.050	-0.038	-0.041	0.201	-4.655	-0.938
	0.021 (1.12)	0.0.2	0.077	0.000	0.000	01011	01201		01700
Log-logistic	0.100 (ED)	0.060	-0.856	0.080	-0.065	-0.075	0.243	-4.482	-1.088
208 1081000	0.100 (MD)	0.062	-0.860	0.078	-0.067	-0.075	0.244	-4.505	-1.099
	0.321 (ED)	0.037	-0.936	0.048	-0.035	-0.040	0.310	-5.012	-1.555
	0.321 (MD)	0.039	-0.967	0.057	-0.042	-0.050	0.594	-5.394	-3.205
	0.021 (112)	0.027	0.707	0.027	0.012	0.020	0.071	0.071	0.200
Log-normal	0.100 (ED)	0.073	-0.696	0.095	-0.079	-0.090	1.323	-3.290	-4.354
Log norma	0.100 (MD)	0.089	-0 791	0.073	-0.114	-0.129	3 283	-4 140	-13 59
	0.321 (ED)	0.045	-0.838	0.061	-0.042	-0.049	0.985	-4 206	-4 141
	0.321 (MD)	0.050	-0.925	0.069	-0.055	-0.064	2.458	-5.061	-12.44
	0.521 (MD)	0.050	-0.923	0.009	-0.055	-0.004	2.430	-3.001	-12.44

Table A: "Wire minimization" approach. The numerical values of the elements of the

bordered Hessian and principal minors for each type of the spine volume distribution.

For each value of θ there are two values of Hessian matrix and Minors corresponding to minimal Euclidean (ED) and Mahalanobis (MD) distances.

2 Spine economical maximization principle.

2.1 The system of basic equations for optimal solution.

Explicit form of the fitness function.

The explicit dependence of the benefit-cost function F_s on the three parameters x, y, \overline{u} is given as

$$F_s = \frac{Pxy}{\overline{u}^{\gamma_2}} + \lambda_2 \left(x + y + Pxy + \frac{a(Pxy)^{2/3}}{\overline{u}^{2/3}} + \frac{a(Pxy)^{5/3}}{\overline{u}^{2/3}} - 1 \right).$$
(10)

The basic optimal equations.

The optimal values of x, y, \overline{u} , and λ_2 are found by differentiating the benefit-cost function F_s (Eq. 10) with respect to x, y, \overline{u} , and λ_2 , and requiring that appropriate derivatives are zero. As a result, we obtain the following set of four nonlinear equations:

$$Py + \lambda_2 \overline{u}^{\gamma_2} \left(1 + Py + \frac{a}{3} \left(\frac{P^2 y^2}{x \overline{u}^2} \right)^{1/3} [2 + 5Pxy] \right) = 0, \tag{11}$$

$$Px + \lambda_2 \overline{u}^{\gamma_2} \left(1 + Px + \frac{a}{3} \left(\frac{P^2 x^2}{y \overline{u}^2} \right)^{1/3} [2 + 5Pxy] \right) = 0, \tag{12}$$

$$\left[\left(\frac{1}{\overline{u}^{\gamma_2}} + \lambda_2\right) (xy)^{1/3} + \frac{a\lambda_2(2+5Pxy)}{3(P\overline{u}^2)^{1/3}} \right] \frac{\partial P}{\partial \overline{u}} = \left[\frac{\gamma_2(xy)^{1/3}}{\overline{u}^{\gamma_2+1}} + \frac{2a\lambda_2(1+Pxy)}{3(P\overline{u}^5)^{1/3}} \right] P, \quad (13)$$

and

$$x + y + Pxy + \frac{a(Pxy)^{2/3}}{\overline{u}^{2/3}} + \frac{a(Pxy)^{5/3}}{\overline{u}^{2/3}} = 1.$$
 (14)

Note that from Eqs. (11) and (12) it follows that λ_2 must be negative, since all other terms on the left hand side are positive. This observation is used below for determination of the type of extremum.

Proof that x = y.

First, we show that for optimal x and y we have x = y. To do this, we subtract Eqs. (11) and (12). As a result we get:

$$(y-x)\left[P(1+\lambda_2\overline{u}^{\gamma_2})+\lambda_2\overline{u}^{\gamma_2}\frac{a}{3}\left(\frac{P^2}{xy\overline{u}^2}\right)^{1/3}(2+5Pxy)\right]=0,$$
(15)

where the expression in the [...] bracket is equal either to $-\lambda_2 \overline{u}^{\gamma_2}/y$ (from Eq. 11) or to $-\lambda_2 \overline{u}^{\gamma_2}/x$ (from Eq. 12). Thus, Eq. (15) is equivalent to the following equation:

$$(y-x)\frac{\lambda_2 \overline{u}^{\gamma_2}}{y} = 0, \tag{16}$$

which implies that for nonzero λ_2 and \overline{u} we must have x = y. (The benefit-cost function F_s is defined only for $\overline{u} > 0$, see Eq. 10). If however, $\lambda_2 = 0$, then from Eqs. (11) and (12) we get that Px = Py = 0. The case P = 0 implies $\overline{u} = 0$ (see eqs relating P and \overline{u} in the Methods), which however is forbidden. Thus $P \neq 0$, and in this case we must have x = y = 0, i.e. xand y are still equal to each other.

Reduction of dimensionality in the system of basic equations.

Next, we show that we can decrease the number of basic equations. Because x = y, we can reduce the system of 4 equations to the system of 3 equations with unknowns $x, \overline{u}, \lambda_2$ (Eqs. 11 and 12 are in fact the same equation). Moreover, we can get rid of λ_2 , since it always appears in the first power, which additionally allows us to reduce the system dimensionality to 2. The parameter λ_2 can be determined from Eq. (11) (with the substitution y = x) and it reads:

$$\lambda_2 = -\frac{Px}{\overline{u}^{\gamma_2} \left(1 + Px + \frac{a}{3} \left(\frac{P^2 x}{\overline{u}^2}\right)^{1/3} [2 + 5Px^2]\right)}.$$
(17)

Next, we can insert λ_2 into Eq. (13). After this procedure Eq.(13) becomes

$$\overline{u}^{2/3}\frac{\partial P}{\partial \overline{u}} = \frac{P}{\overline{u}}\left(\gamma_2 \overline{u}^{2/3} (1+Px) + \frac{a}{3} P^{2/3} x^{1/3} [2(\gamma_2 - 1) + (5\gamma_2 - 2)Px^2]\right)$$
(18)

and Eq. (14) after the substitution y = x becomes

$$2x + Px^{2} + \frac{aP^{2/3}x^{4/3}}{\overline{u}^{2/3}} + \frac{aP^{5/3}x^{10/3}}{\overline{u}^{2/3}} = 1.$$
 (19)

The derivatives of P with respect to \overline{u} have different forms depending on the type of density probability of spine volumes H(u) (see the main text).

Eqs. (18) and (19) constitute the reduced system of basic equations, which is used for computations of two independent variables x and \overline{u} . This two-dimensional system can be solved by a handful of numerical techniques (e.g. [1]).

2.2 Proof of the local maximum for optimal solution related to spine economy.

As before, let us introduce the following notation: $x_1 \equiv x, x_2 \equiv y, x_3 \equiv \overline{u}$. Then the fitness function F_s (Eq. 10) can be rewritten as:

$$F_s = \frac{Px_1x_2}{x_3^{\gamma_2}} + \lambda_2 g(x_1, x_2, x_3),$$
(20)

where the probability P is a function of x_3 , and $g(x_1, x_2, x_3)$ denotes the constraint term present in Eq. (10). Let us define partial derivatives: $F_{ij} = \partial^2 F_s / \partial x_i \partial x_j$ and $g_i = \partial g / \partial x_i$,

which are determined at the critical point represented by optimal values of x_1, x_2, x_3 . Using these definitions we can construct a matrix called bordered Hessian for our constraint optimization problem as [2]:

$$\begin{bmatrix} 0 & g_1 & g_2 & g_3 \\ g_1 & F_{11} & F_{12} & F_{13} \\ g_2 & F_{21} & F_{22} & F_{23} \\ g_3 & F_{31} & F_{32} & F_{33} \end{bmatrix}$$

This particular matrix has a high degree of symmetry, since: $g_1 = g_2$, $F_{ij} = F_{ji}$, and additionally $F_{11} = F_{22}$, $F_{13} = F_{23}$.

A sufficient condition for F_s to have a local maximum at the critical point represented by the optimal values x_1, x_2, x_3 is that two principal minors, i.e. determinants of the upper-left sub-matrices 3x3 (called D_1) and 4x4 (determinant of the entire bordered Hessian called D_2), alternate in sign. Specifically, the principal minors must have respectively positive (D_1) and negative (D_2) signs [2]. Using the high symmetry in the Hessian matrix, the explicit forms of these determinants are as follows:

$$D_1 = 2g_1^2(F_{12} - F_{11}) \tag{21}$$

and

$$D_2 = g_1^2 (F_{12} - F_{11}) \left[2F_{33} - 4\epsilon F_{13} + \epsilon^2 (F_{12} + F_{11}) \right], \tag{22}$$

where $\epsilon \equiv g_3/g_1$. It is relatively easy to show that $g_1 \geq 1$, and the expression for ϵ reads

$$\epsilon = \frac{x}{P} \left(\frac{\partial P}{\partial \overline{u}} - \frac{\gamma_2 P}{\overline{u}} \right).$$
(23)

In general for all considered distributions of spine volume, the numerical value of ϵ is very small at the critical point, i.e. $|\epsilon| \ll 1$. Typical values of F_{ij} are in the range (-1.7, 1). Thus, approximately the sign of D_2 is determined by the sign of the product $F_{33}(F_{12} - F_{11})$, since other terms in Eq. (22) are much smaller and thus can be neglected. Of these two factors, F_{33} is always negative (which comes from a numerical calculation) and $(F_{12} - F_{11}) = -\lambda_2/x$ is always positive ($\lambda_2 < 0$). This implies that D_2 is negative, and D_1 is positive, which is sufficient for the benefit-cost function F_s (Eq. 10) to have maximum. Exact numerical values of the rescaled minors D_1/g_1^2 and D_2/g_1^2 are presented in Table B (below) together with the values of ϵ and F_{ij} .

Spine size	heta		Bord	Minors				
distribution		ϵ	F_{11}	F_{12}	F_{13}	F_{33}	D_{1}/g_{1}^{2}	D_{2}/g_{1}^{2}
Exponential	0.100 (ED)	-0.053	0.017	0.621	-0.018	-0.059	1.207	-0.072
	0.100 (MD)	-0.053	0.017	0.621	-0.018	-0.059	1.207	-0.072
	0.321 (ED)	0.024	0.016	0.540	-0.010	-0.145	1.048	-0.151
	0.321 (MD)	0.014	0.014	0.526	-0.009	-0.098	1.023	-0.100
Gamma (n=1)	0.100 (ED)	-0.072	0.017	0.657	-0.020	-0.055	1.279	-0.072
	0.100 (MD)	-0.072	0.017	0.657	-0.020	-0.055	1.279	-0.072
	0.321 (ED)	0.061	0.022	0.664	-0.014	-0.397	1.284	-0.506
	0.321 (MD)	0.017	0.016	0.606	-0.012	-0.165	1.180	-0.194
Gamma (n=2)	0.100 (ED)	-0.062	0.013	0.645	-0.014	-0.024	1.263	-0.031
	0.100 (MD)	-0.062	0.013	0.645	-0.014	-0.024	1.263	-0.031
	0.321 (ED)	0.085	0.025	0.739	-0.016	-0.653	1.427	-0.924
	0.321 (MD)	0.033	0.020	0.669	-0.015	-0.315	1.298	-0.408
Rayleigh	0.100 (ED)	-0.098	0.020	0.677	-0.027	-0.072	1.314	-0.097
	0.100 (MD)	-0.058	0.013	0.641	-0.013	-0.021	1.256	-0.028
	0.321 (ED)	0.067	0.025	0.734	-0.018	-0.654	1.418	-0.921
	0.321 (MD)	0.015	0.019	0.662	-0.016	-0.283	1.285	-0.362
Log-logistic	0.100 (ED)	-0.016	0.022	0.654	-0.022	-0.189	1.264	-0.240
0 0	0.100 (MD)	-0.016	0.022	0.654	-0.022	-0.189	1.264	-0.240
	0.321 (ED)	0.124	0.026	0.778	-0.014	-0.895	1.505	-1.332
	0.321 (MD)	0.075	0.025	0.784	-0.019	-0.949	1.518	-1.432
Log-normal	0.100 (ED)	-0.074	0.021	0.582	-0.025	-0.247	1.121	-0.279
5	0.100 (MD)	-0.074	0.017	0.616	-0.019	-0.076	1.199	-0.092
	0.321 (ED)	0.044	0.023	0.683	-0.018	-1.737	1.321	-2.292
	0.321 (MD)	-0.030	0.021	0.666	-0.022	-0.797	1.290	-1.029

Table B: "Spine economical maximization". The numerical values of the elements of the

bordered Hessian and principal minors for each type of the spine volume distribution.

For each value of θ there are two values of Hessian matrix and Minors corresponding to minimal Euclidean (ED) and Mahalanobis (MD) distances.

14

3 Combined "wire minimization" and "spine economy maximization" principle.

3.1 The system of basic equations for optimal solution.

The optimal values of x, y, \overline{u} , and λ are found by differentiating the meta fitness function F (Eq. 1 in the main text) with respect to x, y, \overline{u} , and λ , and requiring that appropriate derivatives are zero. As a result, we obtain the following set of four nonlinear equations:

$$\frac{frx}{\overline{u}^{\gamma_1}} - \frac{(1-f)s}{\overline{u}^{\gamma_2}} + \lambda\left(x+s+\frac{2}{3}g+\frac{5}{3}c\right) = 0,$$
(24)

$$\frac{fy}{\overline{u}^{\gamma_1}} - \frac{(1-f)s}{\overline{u}^{\gamma_2}} + \lambda\left(y+s+\frac{2}{3}g+\frac{5}{3}c\right) = 0,$$
(25)

$$\left(\left[\lambda - \frac{(1-f)}{\overline{u}^{\gamma_2}}\right]s + \frac{\lambda g}{3}(2+5s)\right)\frac{\overline{u}}{P}\frac{\partial P}{\partial \overline{u}} - \frac{2}{3}\lambda g(1+s) = \frac{\gamma_1 f}{\overline{u}^{\gamma_1}}(rx+y) - \frac{\gamma_2 s(1-f)}{\overline{u}^{\gamma_2}}$$
(26)

and

$$x + y + s + g + c = 1. \tag{27}$$

Reduction of dimensionality in the system of basic equations.

As before we can reduce the number of equations from 4 to 3. For this purpose, we determine λ from Eq. (25):

$$\lambda = \frac{(1-f)\frac{s}{\overline{u}^{\gamma_2}} - f\frac{y}{\overline{u}^{\gamma_1}}}{y+s+\frac{2}{3}g+\frac{5}{3}c}$$
(28)

and next, we insert this equation into Eqs. (24) and (26). As a result, we get Eqs. (26-27) in the main text.

3.2 Proof of the local maximum for optimal solution related to spine economy.

The bordered Hessian matrix can be determined similarly as in the previous two cases. A sufficient condition for the meta fitness function F (Eq. 1 in the main text) to have a local minimum is that two principal minors are negative. Exact numerical values of the minors and elements of the bordered Hessian are displayed in Tables C-E, for different mixing ratio f in F. These tables correspond to Tables 4-6 in the main text.

Principle type/		E	Bordered	Hessian	Minors				
spine distr.	F_{11}	F_{12}	F_{22}	F_{13}	F_{23}	F_{33}	D_1	D_2	
wire length min + spine max									
Exponential	-0.010	-0.694	-0.010	0.141	0.141	0.163	-2.870	-0.455	
Gamma (n=1)	-0.013	-0.809	-0.014	0.154	0.153	0.324	-3.664	-1.154	
Gamma (n=2)	-0.015	-0.895	-0.017	0.172	0.168	0.540	-4.228	-2.219	
Rayleigh	-0.015	-0.898	-0.018	0.177	0.171	0.535	-4.289	-2.252	
Log-logistic	-0.017	-0.963	-0.022	0.173	0.156	1.056	-4.867	-5.045	
Log-normal	-0.019	-1.000	-0.022	0.228	0.222	2.370	-5.103	-12.13	
wire surface mir	n + spine	max							
Exponential	-0.008	-0.598	-0.009	0.058	0.058	0.104	-2.488	-0.254	
Gamma (n=1)	-0.011	-0.707	-0.012	0.068	0.067	0.230	-3.211	-0.726	
Gamma (n=2)	-0.013	-0.764	-0.015	0.073	0.070	0.368	-3.626	-1.316	
Rayleigh	-0.013	-0.760	-0.016	0.074	0.071	0.349	-3.645	-1.262	
Log-logistic	-0.015	-0.843	-0.020	0.078	0.071	0.822	-4.264	-3.472	
Log-normal	-0.023	-0.988	-0.030	0.112	0.100	6.943	-4.898	-33.89	
wire volume mir	ı + spine	max							
Exponential	-0.008	-0.545	-0.008	0.005	0.005	0.090	-2.267	-0.204	
Gamma (n=1)	-0.011	-0.637	-0.012	0.008	0.008	0.209	-2.886	-0.601	
Gamma (n=2)	-0.012	-0.681	-0.014	0.010	0.010	0.296	-3.239	-0.955	
Rayleigh	-0.012	-0.674	-0.014	0.010	0.011	0.271	-3.240	-0.878	
Log-logistic	-0.014	-0.759	-0.019	0.013	0.015	0.734	-3.833	-2.804	
Log-normal	-0.015	-0.726	-0.021	0.016	0.019	1.938	-3.632	-7.038	
delays min + spi	ne max								
Exponential	-0.011	-0.751	-0.011	0.195	0.195	0.202	-3.102	-0.603	
Gamma (n=1)	-0.014	-0.888	-0.015	0.220	0.219	0.411	-4.012	-1.589	
Gamma (n=2)	-0.015	-0.941	-0.018	0.224	0.219	0.562	-4.461	-2.433	
Rayleigh	-0.018	-1.004	-0.020	0.258	0.253	0.712	-4.778	-3.313	
Log-logistic	-0.019	-1.076	-0.025	0.250	0.231	1.389	-5.407	-7.316	
Log-normal	-0.022	-1.127	-0.026	0.326	0.316	3.596	-5.570	-19.96	

Table C: Combined "Wire min + spine max" approach for f = 0.1.

Principle type/	Bordered He				Hessian			Minors	
spine distr.	F_{11}	F_{12}	F_{22}	F_{13}	F_{23}	F_{33}	D_1	D_2	
wire length min + spine max									
Exponential	-0.432	-16.79	-0.432	9.602	9.604	858.9	-43.24	-35899.2	
Gamma (n=1)	-0.132	-6.323	-0.126	4.242	4.230	85.09	-19.83	-1542.5	
Gamma (n=2)	-0.055	-4.065	-0.051	2.668	2.612	24.29	-15.13	-320.69	
Rayleigh	-0.054	-4.001	-0.050	2.546	2.491	27.10	-15.66	-378.75	
Log-logistic	-0.017	-2.778	-0.021	1.360	1.459	11.86	-13.58	-146.30	
Log-normal	0.008	-1.679	0.010	0.871	1.000	1.299	-8.369	-10.948	
wire surface min	ı + spine	max							
Exponential	-0.017	-2.345	-0.017	1.280	1.280	12.93	-7.794	-91.96	
Gamma (n=1)	0.008	-1.536	0.008	0.583	0.583	1.576	-6.470	-8.808	
Gamma (n=2)	0.012	-1.206	0.012	0.353	0.353	0.231	-5.844	-1.155	
Rayleigh	0.010	-1.320	0.011	0.402	0.433	0.645	-6.353	-3.725	
Log-logistic	0.005	-1.377	0.008	0.344	0.424	1.764	-7.203	-12.18	
Log-normal	0.010	-1.317	0.013	0.384	0.448	3.027	-6.831	-20.67	
wire volume mir	ı + spine	max							
Exponential	0.017	-0.639	0.017	-0.011	-0.011	0.098	-2.754	-0.272	
Gamma (n=1)	0.014	-0.733	0.016	-0.010	-0.011	0.208	-3.451	-0.720	
Gamma (n=2)	0.013	-0.786	0.016	-0.011	-0.012	0.308	-3.877	-1.196	
Rayleigh	0.014	-0.788	0.016	-0.012	-0.013	0.336	-3.921	-1.320	
Log-logistic	0.011	-0.872	0.014	-0.009	-0.011	0.837	-4.561	-3.817	
Log-normal	0.014	-0.810	0.019	-0.016	-0.018	1.980	-4.282	-8.477	
delays min + spi	ne max							-	
Exponential	-1.173	-47.71	-1.174	27.45	27.48	4239.5	-115.2	$-4.7 \cdot 10^{5}$	
Gamma (n=1)	-0.290	-11.87	-0.290	8.223	8.223	280.65	-34.14	$-8.9 \cdot 10^3$	
Gamma (n=2)	-0.142	-7.007	-0.142	5.057	5.057	82.31	-23.48	$-1.7 \cdot 10^3$	
Rayleigh	-0.133	-6.587	-0.133	4.521	4.521	83.58	-23.60	$-1.8 \cdot 10^3$	
Log-logistic	-0.017	-3.069	-0.022	1.785	1.994	12.03	-15.63	-170.03	
Log-normal	-0.022	-3.329	-0.031	2.025	2.332	70.05	-16.83	-1156.2	

Table D: Combined "Wire min + spine max" approach for f = 0.5.

Principle type/	Bordered Hessian						Minors		
spine distr.	F_{11}	F_{12}	F_{22}	F_{13}	F_{23}	F_{33}	D_1	D_2	
wire length min + spine max									
Exponential	$-2*10^{-7}$	-0.027	$-2*10^{-7}$	$3*10^{-8}$	$3*10^{-8}$	$7*10^{-13}$	-0.107	$-8*10^{-14}$	
Gamma (n=1)	-28.19	-3134.4	-28.19	-854.0	-854.0	$8*10^{5}$	-6590.6	$-5*10^9$	
Gamma (n=2)	-8.533	-666.9	-8.533	-169.3	-169.3	10^{5}	-1440.5	-10^{8}	
Rayleigh	-6.136	-283.8	-6.136	-87.28	-87.28	$4*10^{4}$	-660.35	$-2*10^{7}$	
Log-logistic	$-2*10^{-7}$	-0.027	$-2*10^{-7}$	$3*10^{-8}$	$3*10^{-8}$	$7*10^{-13}$	-0.107	$-8*10^{-14}$	
Log-normal	-0.677	-20.66	-0.944	-1.887	-4.444	17389.8	-100.47	$-2*10^{6}$	
wire surface min	1 + spine n	nax							
Exponential	-11.59	-1045.9	-11.59	-397.0	-397.0	$4*10^{5}$	-2222.0	$-8*10^{8}$	
Gamma (n=1)	-1.608	-94.90	-1.608	-23.57	-23.57	12275.2	-211.3	$-2*10^{6}$	
Gamma (n=2)	-0.606	-29.01	-0.606	-3.631	-3.631	2166.6	-68.41	-10^{5}	
Rayleigh	-0.528	-20.09	-0.528	-2.217	-2.217	1437.8	-51.82	$-7*10^4$	
Log-logistic	-0.084	-5.240	-0.118	0.747	0.745	329.89	-26.11	$-8*10^3$	
Log-normal	-0.013	-3.494	-0.017	1.029	1.174	477.03	-17.12	$-8*10^3$	
wire volume mir	1 + spine n	nax							
Exponential	0.043	-0.725	0.043	-0.028	-0.028	0.079	-3.220	-0.257	
Gamma (n=1)	0.042	-0.840	0.042	-0.031	-0.031	0.177	-4.074	-0.724	
Gamma (n=2)	0.036	-0.878	0.047	-0.030	-0.034	0.284	-4.456	-1.273	
Rayleigh	0.038	-0.879	0.049	-0.034	-0.038	0.325	-4.501	-1.470	
Log-logistic	0.038	-0.986	0.049	-0.032	-0.036	0.948	-5.277	-5.015	
Log-normal	0.044	-0.913	0.057	-0.046	-0.052	2.645	-4.907	-12.99	
delays min + spi	ne max								
Exponential	$-2*10^{-6}$	-0.034	$-2*10^{-6}$	$5*10^{-7}$	$3*10^{-7}$	10^{-10}	-0.135	$-2*10^{-11}$	
Gamma (n=1)	$-2*10^{-6}$	-0.034	$-2*10^{-6}$	$5*10^{-7}$	$3*10^{-7}$	10^{-10}	-0.135	$-2*10^{-11}$	
Gamma (n=2)	-20.49	-1961.9	-20.49	-488.7	-488.7	$3*10^{5}$	-4169.7	$-2*10^9$	
Rayleigh	-16.33	-865.41	-16.33	-287.2	-287.2	10^{5}	-1961.9	$-3*10^{8}$	
Log-logistic	$-2*10^{-6}$	-0.034	$-2*10^{-6}$	$5*10^{-7}$	$3*10^{-7}$	10^{-10}	-0.135	$-2*10^{-11}$	
Log-normal	-0.746	-23.22	-1.035	-0.794	-3.932	19583.9	-112.99	$-2*10^{6}$	

Table E: Combined "Wire min + spine max" approach for f = 0.9.

References

- Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in Fortran. Cambridge: Cambridge Univ. Press.
- [2] Neudecker H, Magnus JR (1988) Matrix Differential Calculus with Applications in Statistics and Econometrics. New York: Wiley.