Supplementary Information

Xenopus borealis as an alternative source of oocytes for biophysical and pharmacological studies of neuronal ion channels

Ben Cristofori-Armstrong, Ming S. Soh, Sahil Talwar, Darren L. Brown, John D. O. Griffin, Zoltan Dekan, Jennifer L. Stow, Glenn F. King, Joseph W. Lynch & Lachlan D. Rash

Supplementary Table S1

Comparison of mean values for fast and slow time constants (τ) of deactivation for K_V10.1 channels tested in *X. laevis* and *X. borealis* oocytes. There is no evidence of a difference between the two species for all measured parameters (unpaired t-test, *P* > 0.05).

Ion Channel	Tau – deactivation (ms)		P value	Reference
K _V 10.1	X. laevis	X. borealis		
Slow (-120 mV)	145.9	169.7	0.075	
Slow (-110 mV)	147.6	169.8	0.085	1
Slow (-100 mV)	174.4	193.7	0.257	
Slow (-90 mV)	180.0	198.9	0.187	
Fast (-120 mV)	25.6	27.1	0.725	
Fast (-110 mV)	21.9	25.2	0.406	1
Fast (-100 mV)	22.4	27.3	0.289	
Fast (-90 mV)	20.5	23.9	0.319	

Supplementary Table S2

Properties of MTS-TAMRA labelled α_1 N203C and MTSR labelled α_1 R271C human GlyRs. Comparison of EC₅₀, slope, maximal current change (ΔI_{max}), and maximal fluorescence change (ΔF_{max}) values tested in *X. laevis* and *X. borealis* oocytes. Data are mean ± s.e.m. There is no evidence of a difference between the two species for all measured parameters (unpaired t-test, *P* > 0.05). Data are comparable to literature values for α_1 N203C ² and α_1 R271C ³.

Ion Channel	EC ₅₀	P value		
GlyR	X. laevis	X. borealis		
α_1 N203C ΔI	145 ± 10	136 ± 8.7	0.69	
α_1 N203C ΔF	548 ± 25	408 ± 51	0.63	
$\alpha_1 R271 C \Delta I$	1926 ± 175	1698 ± 104	0.52	
$\alpha_1 R271C \Delta F$	872 ± 58	1006 ± 98	0.46	
	Slo	P value		
	X. laevis	X. borealis		
α_1 N203C ΔI	1.9 ± 0.2	1.5 ± 0.1	0.82	
α_1 N203C ΔF	1.4 ± 0.2	1.8 ± 0.1	0.62	
$\alpha_1 R271 C \Delta I$	1.4 ± 0.2	2.0 ± 0.2	0.1	
$\alpha_1 R271C \Delta F$	1.3 ± 0.2	1.0 ± 0.1	0.46	
	$\Delta I_{max} (\mu A) d$	P value		
	X. laevis	X. borealis		
α_1 N203C ΔI	8.4 ± 0.2	8.0 ± 0.8	0.63	
α_1 N203C ΔF	25.9 ± 4.2	27.8 ± 4.4	0.77	
$\alpha_1 R271 C \Delta I$	3.4 ± 1.7	2.7 ± 0.5	0.69	
$\alpha_1 R271 C \Delta F$	12.2 ± 2.2	9.0 ± 2.2	0.34	

Supplementary Table S3

Comparison of half-maximal response and slope values for ion channels tested in *X. laevis* and *X. borealis* oocytes and references to studies reporting similar values for these parameters. Steady-state desensitisation: SSD; Activation: act. There is no evidence of a difference between the two species for any of the measured parameters (unpaired t-test, P > 0.05).

Ion Channel	Half-maxin	nal response	P value	Slope		P value	Reference		
	X. laevis	X. borealis		X. laevis	X. borealis				
Voltage-gated potassium channels									
K _V 10.1	19.7 mV	20.2 mV	0.86	20.8	20.6	0.90	1		
K _v 11.1	-24.3 mV	-23.7 mV	0.18	6.98	7.53	0.16	4		
Voltage-gated sod	Voltage-gated sodium channels								
Na _v 1.2	-22.5 mV	-22.3 mV	0.61	4.74	4.60	0.84	5		
Na _v 1.5	-33.5 mV	-33.8 mV	0.49	4.81	4.22	0.08	6		
Na _v 1.7	-14.2 mV	-14.8 mV	0.09	5.24	4.88	0.27	7		
Acid-sensing ion of	channels								
ASIC1a pH _{act}	pH 6.11	pH 6.06	0.27	1.95	1.86	0.83	8		
ASIC1a pH _{SSD}	pH 7.19	pH 7.19	0.66	10.39	9.97	0.69	8		
ASIC1b pH _{act}	рН 5.95	pH 5.97	0.11	3.98	3.36	0.12	9		
ASIC1b pH _{SSD}	pH 6.78	pH 6.78	0.72	4.17	4.09	0.91	10		
ASIC2a pH _{act} Ambiguous fits with sigmoidal non-linear regression model									
ASIC2a pH_{SSD}	рН 5.99	pH 5.98	0.66	2.27	2.37	0.78	11		
ASIC3 pH _{act}	pH 6.16	pH 6.12	0.13	1.46	1.60	0.40	9		
ASIC3 pH_{SSD}	pH 7.04	pH 7.02	0.19	8.25	9.04	0.70	12		
Pc1a:ASIC1a	1.00 nM	1.03 nM	0.63	1.44	1.60	0.34	13		
APETx2:ASIC3	64.7 nM	51.1 nM	0.05	0.84	0.93	0.37	14		
GABA _A receptors									
$lpha_1eta_2\gamma_{2 m L}$	25.1 μM	17.9 μM	0.27	0.56	0.60	0.71	15		
$lpha_5eta_2\gamma_{2 m L}$	5.18 µM	4.71 μΜ	0.84	0.49	0.74	0.16	16		
$\alpha_5 \beta_3 \gamma_{2L}$	3.10 µM	3.92 µM	0.35	0.75	0.93	0.27	17		

Supplementary Figure S1

Figure. S1. Deactivation kinetics of Kv10.1 channels expressed in *X. laevis* (●) and *X.*

borealis (\blacksquare) oocytes. Fast (open symbols) and slow (closed symbols) time constants (τ) of

deactivation (analysed from the tail current at different voltages following a maximally activating

pre-pulse to +80 mV) (n = 12-15). Error bars indicate 95% confidence intervals.

Supplementary References

- 1 Simons, C. *et al.* Mutations in the voltage-gated potassium channel gene *KCNH1* cause Temple-Baraitser syndrome and epilepsy. *Nat. Genet.* **47**, 73-77, doi:10.1038/ng.3153 (2015).
- 2 Pless, S. A. & Lynch, J. W. Ligand-specific conformational changes in the α1 glycine receptor ligand-binding domain. *J. Biol. Chem.* **284**, 15847-15856, doi:10.1074/jbc.M809343200 (2009).
- 3 Pless, S. A., Dibas, M. I., Lester, H. A. & Lynch, J. W. Conformational variability of the glycine receptor M2 domain in response to activation by different agonists. *J. Biol. Chem.* **282**, 36057-36067, doi:10.1074/jbc.M706468200 (2007).
- 4 Twiner, M. J. *et al.* Marine algal toxin azaspiracid is an open-state blocker of hERG potassium channels. *Chem. Res. Toxicol.* **25**, 1975-1984, doi:10.1021/tx300283t (2012).
- 5 Nguyen, H. M. & Goldin, A. L. Sodium channel carboxyl-terminal residue regulates fast inactivation. *J. Biol. Chem.* **285**, 9077-9089, doi:10.1074/jbc.M109.054940 (2010).
- Jones, D. K., Peters, C. H., Tolhurst, S. A., Claydon, T. W. & Ruben, P. C. Extracellular proton modulation of the cardiac voltage-gated sodium channel, Nav1.5. *Biophys. J.* 101, 2147-2156, doi:10.1016/j.bpj.2011.08.056 (2011).

- Zhang, M. M. *et al.* Co-expression of Na_vβ subunits alters the kinetics of inhibition of voltage-gated sodium channels by pore-blocking μ-conotoxins. *Br. J. Pharmacol.* 168, 1597-1610, doi:10.1111/bph.12051 (2013).
- 8 Schroeder, C. I. *et al.* Chemical synthesis, 3D structure, and ASIC binding site of the toxin mambalgin-2. *Angew. Chem. Int. Ed. Engl.* **53**, 1017-1020, doi:10.1002/anie.201308898 (2014).
- 9 Hesselager, M., Timmermann, D. B. & Ahring, P. K. pH Dependency and desensitization kinetics of heterologously expressed combinations of acid-sensing ion channel subunits. *J. Biol. Chem.* **279**, 11006-11015, doi:10.1074/jbc.M313507200 (2004).
- 10 Chen, X., Kalbacher, H. & Gründer, S. Interaction of acid-sensing ion channel (ASIC) 1 with the tarantula toxin psalmotoxin 1 is state dependent. *J. Gen. Physiol.* **127**, 267-276, doi:10.1085/jgp.200509409 (2006).
- 11 Salinas, M. *et al.* Binding site and inhibitory mechanism of the mambalgin-2 painrelieving peptide on acid-sensing ion channel 1a. *J. Biol. Chem.* **289**, 13363-13373, doi:10.1074/jbc.M114.561076 (2014).
- 12 Yagi, J., Wenk, H. N., Naves, L. A. & McCleskey, E. W. Sustained currents through ASIC3 ion channels at the modest pH changes that occur during myocardial ischemia. *Circ. Res.* **99**, 501-509, doi:10.1161/01.RES.0000238388.79295.4c (2006).
- Escoubas, P. *et al.* Isolation of a tarantula toxin specific for a class of proton-gated Na⁺ channels. *J. Biol. Chem.* 275, 25116-25121, doi:10.1074/jbc.M003643200 (2000).
- 14 Diochot, S. *et al.* A new sea anemone peptide, APETx2, inhibits ASIC3, a major acidsensitive channel in sensory neurons. *EMBO J.* **23**, 1516-1525, doi:10.1038/sj.emboj.7600177 (2004).
- 15 Hall, B. J., Chebib, M., Hanrahan, J. R. & Johnston, G. A. 6-Methylflavanone, a more efficacious positive allosteric modulator of gamma-aminobutyric acid (GABA) action at human recombinant $\alpha_2\beta_2\gamma_{2L}$ than at $\alpha_1\beta_2\gamma_{2L}$ and $\alpha_1\beta_2$ GABA_A receptors expressed in *Xenopus* oocytes. *Eur. J. Pharmacol.* **512**, 97-104, doi:10.1016/j.ejphar.2005.02.034 (2005).
- 16 Karim, N. *et al.* Potency of GABA at human recombinant GABA_A receptors expressed in *Xenopus* oocytes: a mini review. *Amino acids* **44**, 1139-1149, doi:10.1007/s00726-012-1456-y (2013).
- 17 Ramerstorfer, J., Furtmuller, R., Vogel, E., Huck, S. & Sieghart, W. The point mutation γ2F77I changes the potency and efficacy of benzodiazepine site ligands in different GABA_A receptor subtypes. *Eur. J. Pharmacol.* **636**, 18-27, doi:10.1016/j.ejphar.2010.03.015 (2010).