Persistence and variation in microstructural design during the evolution of spider silk

R. Madurga^{1,2}, T.A. Blackledge³, B. Perea^{1,2}, G.R. Plaza^{1,2}, C. Riekel⁴, M. Burghammer⁴, M. Elices^{1,2}, G. Guinea^{1,2}, J. Pérez-Rigueiro^{1,2*}

¹ Centro de Tecnología Biomédica. Universidad Politécnica de Madrid. 28223 Pozuelo de Alarcón (Madrid). Spain

² Departamento de Ciencia de Materiales. ETSI Caminos, Canales y Puertos.
Universidad Politécnica de Madrid, 28040 Madrid. Spain

³ Department of Biology and Integrated Bioscience Program. The University of Akron, Akron, OH44325-3908.USA

⁴ European Synchroton Radiation Facility, B.P. 220, F-38043, Grenoble Cedex. France

SUPPLEMENTARY INFORMATION

FIGURE METHODS

Figure Methods 1: Representative azimuthal integration of an XRD diffraction pattern, and deconvolution into different contributions. The experimental profile is fitted using Gaussian functions for the Bragg reflections and short-range-order scattering, and a constant for the residual background scattering of the sample. Experimental data correspond to a maximum supercontracted fiber spun by a *Caerostris darwini* spider.

Figure Methods 2: Representative azimuthal fit of the radially integrated (210) reflection from an XRD pattern of a maximum supercontracted MAS fiber spun by a *Caerostris darwini* spider assuming Gaussian functions for the Bragg reflections and a constant background.

Figure Methods 3: Scheme of the areas selected to calculate the average intensity produced by the amorphous fraction of the fiber by azimuthal integration. XRD pattern corresponds to a *Caerostris darwini* MAS fiber. Angles were adjusted, if necessary, for other patterns in order to select areas where the intensities of the Bragg peaks can be considered negligible.