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Murine model of systemic inflammatory response 

Lipopolysaccharide (LPS) is a potent stimulator of inflammatory marker production
39

, 

able to induce an SIR. It is also a typical ‘alert’ signal for an immunological reaction in case 

of infection with Gram-negative bacteria. Typical markers of inflammation that are induced 

by LPS are cytokines, e.g. TNF-α, IL-1 and IL-6. We used LPS to induce a systemic 

inflammatory reaction in C57Bl6/J mice (two doses of LPS: the first dose of 2 mg/kg and 18 

hours later the second dose of 1 mg/kg). Control mice were treated with PBS, accordingly. 

Four hours after the second dose of LPS, TNF-α, IL-1 and IL-6 were quantitated in murine 

blood. A significant increase of all investigated cytokines in the blood was observed in LPS-

treated mice in comparison to the control. The increase of TNF-α was 4.3-fold, IL-1 was 

increased 6.07-fold and IL-6 was increased 3.12-fold (Supplementary Fig. 1). Markedly 

increased inflammatory markers in the blood confirm a systemic reaction to LPS and 

stimulation of innate immunity. This model was applied for testing phage circulation in 

conditions of an SIR.  
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Supplementary Figure 1. Inflammatory markers in murine model of systemic inflammatory 

response (SIR). 

C57Bl6/J mice were injected intraperitoneally with two doses of LPS: the first dose of 2 

mg/kg and 18 hours later the second dose of 1 mg/kg. Control mice were treated with PBS, 

accordingly. Four hours after the second dose TNF-α, IL-1 and IL-6 was quantified in murine 

blood by quantitative development ELISA test. 

LPS – the level of inflammatory markers in mice treated with LPS; PBS – the level of 

inflammatory markers in control mice treated with PBS.  

 

Mathematical model 

We modified and extended the models of Levin and Bull
17, 18 

and Payne and Jansen
19,20

 

as described in the Material and Methods section. Equation (1) describes the growth of the 

bacterial population. The number of bacterial cells grows exponentially, unless the growth is 

reduced by phage, or the innate or adaptive immune system. Consequently, interaction terms 

in equation (1) all have minus signs. We assume that the decrease of the growth rate is 

proportional to both the current size of the bacterial population and the current size of 

antagonist populations. 

Equations (2)-(3) constitute our proposed model of the innate system response. When 

the concentration of bacterial cells exceeds the threshold cS  and resources are unlimited, the 
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concentration of innate system particles grows exponentially with a constant rate Ia . 

Functions 
dg  ,  are modifications of the hyperbolic function proposed by Monod

33
: 
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where C  stands for the amount of a resource and k  is the value of C  for which   is half of 

its maximum value. Note that   takes values from the range 1,0 . We say that formula (7)has 

one degree of freedom, because we may set up the value of one parameter k  in order to fit the 

formula to laboratory data.  

Those functions describe the relation between growth rate reduction of a cell 

population and resource concentration. From the immune system and phage point of view, the 

bacteria are a resource. Therefore, actual growth and decay rates of the innate system are 

always lower than Ia  and Id , respectively. This is expressed by multiplication of Ia  by 
g  

or Id  by d . The actual growth and decay rates of the innate immune response are equal to 

)(ta gI   or ).(td dI   

 We decided to extend formula (7) to formula (3), having one additional degree of 

freedom Sc. Moreover, formula (3) has discontinuity of the first derivative at point cS . The 

general idea behind formula (3) is to allow the innate system response to decay, which is not 

the case in the Monod
40

 formula (7). The comparison between the Monod function and our 

extension is given in Supplementary Figure 2. It may be considered, on the basis of the 

theoretical background or laboratory observations, whether function (3) should be smooth at 

the critical point cS . 
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Supplementary Figure 2. Illustration of formula (3). 

 

Dynamics of a free phage population are described by equation (4). The second term 

also appears in equation (1). This is the amount of bacteria-phage units that have arisen as a 

consequence of phage adsorption at the current time. Adsorbed phages can no longer infect 

other cells, hence the minus sign. The first term has a similar form as the second except that it 

is delayed by   time units. Its role is to take into account new free phages that were released 

by bacterial cells infected   hours ago. It is assumed that bacteria and the phage are excluded 

from their populations immediately after coupling. The two terms described here come from 

the work of Levin and Bull
18

. We neglect the so-called thermodynamic effects, which within a 

time cause degradation of free phage. Instead, we included two additional terms describing 

phage loss due to innate and adaptive immune responses.  

Dynamics of adaptive immune responses against phage and against bacteria are 

modeled using equations (5) and (6), respectively. These equations have a similar form to the 

equation proposed by Levin and Bull
18

 for the immune system. The last factor that we 

included in both equations converts the exponential growth (assumed for the innate response) 

into logistic growth. Note that in the literature, innate and adaptive immune responses are not 
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clearly distinguished, whereas we treat them as two different systems. There are two 

important differences between innate and adaptive responses that our model takes into 

account: onset time (the innate response precedes adaptive response activation) and scope (the 

innate response suppresses both bacteria and phage, whereas the adaptive response is 

specific). According to the current state of knowledge
27

, we assume that only bacteria 

stimulate the innate response, while the phage has no effect on innate immunity. However, 

innate immunity affects both bacteria and phages. In the case of bacteria whose propagation 

depends on resources delivered by a mammalian host, in most cases bacteria-innate immunity 

dependency resembles the typical predator-prey pattern, i.e. strong stimulation of innate 

immunity (systemic inflammatory response) by a large number of bacteria eventually inhibits 

bacteria; reduction of this pressure (low bacterial number) allows for bacterial growth. 

Additional action of adaptive immunity can lead to destruction of bacteria. In the case of 

bacteria that intensively stimulate the systemic inflammatory response but are not very 

sensitive to the action of innate immunity, the results can be fatal to the mammalian host 

(Supplementary Fig. 3).  

 

Supplementary Figure 3. Interaction of bacterial population and innate immune 

response. In both simulations initial size of bacterial population is 
3103)0( S  and values of 

parameters describing innate immune response are 5.0Ia , 5.0Id , 
510Ik , 

210cS
, 
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510SI
. The only difference concerns the growth rate, which equals 

3.0Sa
 in panel A 

and 
5.0Sa

 in panel B. 

 

Computer simulations were performed in MATLAB r2014a with the use of ode45 and 

dde23 solvers
41

. In all simulations we assume that the critical level of bacterial concentration 

is 10
9
. When the bacterial concentration is higher, it means that the infection cannot be 

overcome by the host response (the lethal effect).  
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