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The complete set of governing equations describing the photo-responsive behavior of the azoben-

zene liquid crystal polymer network is given here to further clarify the modeling approach and

elucidate the driving forces due to light induced deformation. The set of equations used to describe

photomechanical deformation in the azo-LCNs is based on a Lagrangian density and dissipative po-

tential that contains free space energy (LF ), kinetic and stored energy of the solid (LM ), electronic

interactions (LI), and dissipation due to light scattering and photochemical inefficiencies (D). These

terms are given by
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The electromagnetic field Lagrangian density (LF ) includes Ei as the electric field and Bi as

the magnetic flux density, both in the spatial frame. The free space permittivity and permeability

are ǫ0 and µ0, respectively. The interaction Lagrangian (LI) includes the spatial frame current

density Ji, magnetic vector potential Ai, bound charge density q, and electric potential φ. The

matter Lagrangian density per undeformed volume (LM ) includes separate kinetic energies for the

center-of-mass in the first term, a set of optical modes in the second term, and the last term is the
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stored energy. The kinetic energies are defined by the mass density per undeformed volume ρ0 and

velocity ẋi and the electronic kinetic energy written as a function of the material time derivatives

of the electronic vector order parameters, ẏαi , and the effective mass density with units of mass per

undeformed volume, mα. Two order parameters (α = t, c) are considered to independently model

the trans and cis states. The stored energy per undeformed volume (ρ0Σ) in LM is a function of

the small strain tensor εij , the electronic coordinate (yαi ), and its gradient (yαi,j)
1, 2. The dissipative

energy D describes losses associated with light scattering and photochemical reactions in terms of

the velocity of the electronic coordinates and the damping parameter γα.

The stored energy and the electronic coordinate vector order parameters are defined for character-

izing material continuum length scales while retaining critical underlying light-matter characteristics.

The model assumes that the electronic coordinates are summed and averaged over a continuum rep-

resentative volume element. This formulation is non-relativistic where material velocities must be

much smaller than the speed of light. Within the visible and ultra-violet light spectra, the oscillation

velocity of the charged particles is still approximately three orders of magnitude smaller than the

speed of light. This assumes that the charged particles do not displace more than 10% of the size

of an azobenzene molecule. An important component of this formulation is the choice of the stored

energy function contained within LM , which is expressed in the following section.

Stored energy relations

The stored energy function Σ consists of four different contributions: Σt and Σc are non-convex

energy functions for the trans and the cis states, respectively; Σm is the elastic energy of the

glassy polymer network, and Σcoupl defines the coupling between the trans vector coordinate and the

polymer network deformation. Deformation attributed to the cis state is neglected since this phase

normally leads to disorder. Furthermore, the trans coordinate is reduced in magnitude as the cis

concentration increases. The energy function is written as

Σ(ǫij , y
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in terms of the the small strain tensor ǫij , the electronic vector order parameters yαi and their

gradients yαi,j. Each part of the stored energy density is defined by
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where the phenomenological parameters aα and bα(ŷt0) for α = t, c govern the evolution of the

electronic coordinates, aα0 is a penalty on gradients of yαi , bijkl is a fourth order tensor that couples

the trans coordinate vector order parameter to stress. It should be noted that we neglect any coupling

between two vector order parameters and therefore conservation of concentration of the two material

states is not necessarily guaranteed. In Eq. (3), the parameters aα < 0 and bα(ŷt0) > 0 which creates

the non-convex function given in the main paper (Figure 2). The higher order parameter, bα, is

defined to be a function of a time averaged trans state, ŷt0, to model the slower time dynamics

of photoisomerization relative to dynamics that occur at visible and UV light frequencies. This

equation is given in the following section. The higher order model parameter bα(ŷt0) changes during

trans-cis photoisomerization such that the trans coordinate reduces in magnitude while the cis

coordinate increases from near zero. This assumes a loss of nematic order as the concentration of

the cis state increases. The functional forms of these phenomenological parameters are assumed to

be bt(ŷt0) = bt0/(ŷ
t
0)

2 and bc(ŷt0) = bc0/(1− ŷt0)
2 where bt0 and bc0 are positive constants. The time

averaged electronic state is restricted to 0 < ŷt0 < 1 such that bt and bc are bounded and ŷt0 = 1 and

ŷt0 = 0 denote the fully trans and the fully cis state, respectively. All the parameters, excluding the

photostrictive coefficients, are summarized in Table 1. The photostrictive parameters are described

in more detail in the subsequent section.

Governing equations

Minimization of the Lagrangian energy densities and dissipative energy function from Eq. (1)

leads to the time-dependent set of electronic displacement balance equations, Maxwell’s equations,

and linear momentum equations. An additional auxilliary equation associated with photochemical

reaction rates is also discussed.
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Electronic Displacement Balance Relations

Two electronic force balance equations for the trans and cis states are obtained through energy

minimization with respect to yαi . These equations quantify the time dependent behavior of the

optically active trans and cis azobenzene states as a function of light excitation. The absorption

spectra depend on the concentration of the trans and cis states. The trans state strongly absorbs

UV light (∼370 nm) and the cis state strongly absorbs visible light with wavelengths in the 460 nm

regime. The resulting dynamic equation is

mα d
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dt2
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dt

+
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where ν is t or c for the trans and cis vector order parameter, respectively. qα is the effective bound

charge density per undeformed volume given by equation Eq. (1) in the main paper and qαν is the

charge density associated with the higher order gradients on the electric field and magnetic flux

density. The higher order terms were identified to be negligible and is therefore not used in the

current study.

The time-averaged magnitude of the trans state, ŷt0, which is approximately
[

(ȳt1)
2 + (ȳt2)

2 + (ȳt3)
2
]1/2

at a given time where the overbar represents time-average3, 4 , is treated on the time scale of photoiso-

merization which is significantly slower than the optical wavelength time period. The time-averaged

magnitude of the trans state is determined by

dŷt0
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+
1
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1
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[
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where α =
|yt · e|

|yt||e|
and e is the unit vector representing the direction of light polarization. χ is a sensi-

tivity parameter governing the amount of photoisomerization lying on the range of 0 ≤ χ < 1/(e ·E)2.

For example, if χ = 0, the time averaged trans state is always one (zero photoisomerization). As

χ increases, the time averaged trans state will be reduced if the electronic oscillation increases at

a particular light wavelength. The time constant τavg is defined to be on the order of the photoi-

somerization rate (∼10 ps). This equation must be solved simultaneously with all other governing

equations to determine the evolution of the azobenzene state.
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Maxwell’s equations

Minimization of the field quantities leads to the Maxwell equations in the spatial configuration

given by

eijkEk,j = −
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eijkBk,j = µ0

(
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)

ǫ0Ei,i = q

Bi,i = 0.

(6)

For the azo-LCN model, both the surface current and surface charge are set to zero and the

charge density is

q = −Pi,i +Qij,ij (7)

where Pi and Qij are the polarization and the quadrupole density, respectively. The polarization

and the quadrupole are determined from the internal electronic coordinates using
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∑
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2
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(8)

for µ, ν = t, c which is valid in the small strain limit.

The current density, neglecting magnetization effects, is

Ji(x, t) =
∂Pi

∂t
+ (Piẋj),j − (Pj ẋi),i −

∂Qji,j

∂t
− (Qij ẋk),jk + (Qjkẋi),jk. (9)

Linear momentum equations

We assume linear elastic behavior of a glassy polymer coupled to quadratic dependence on the

trans vector order parameter. Due to large disparity in time scales between optical waves and elastic

waves and viscoelasticity within glassy polymer, we neglect the rate dependent deformation and solve

the quasi-static form of linear momentum given by

5



σij,j = (cijklǫkl − bijkly
t
ky

t
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where the reference stress is σR
ij = −bijkly

t0
k yt0l and the superscript t0 denotes the initial microstruc-

ture configuration of the trans state. The sign of the photostrictive parameters determine elongation

or contraction with respect to the trans vector order parameter. The two cases considered in the simu-

lations uses the parameter values in Table 2. In this case, the coupling tensor bijkl reduces to bijkl = 0

excluding b1111 = b2222 = b3333 = b1, b1122 = b1133 = b2233 = b2, and b1212 = b1313 = b2323 = b3. Also

note due to symmetry that bijkl = bklij and bijkl = bjikl = bijlk. Similar symmetry exists for the

elastic tensor cijkl.

The total Cauchy stress denoted by σij contains components associated with deformation and

the internal electronic order parameters. Assuming an isotropic elastic medium, the expanded form

of the Cauchy stress is5

σ11 = c1111ǫ11 + c1122(ǫ22 + ǫ33)− b1y
t
1y

t
1 − b2(y

t
2y

t
2 + yt3y

t
3)− σR

11

σ22 = c1111ǫ22 + c1122(ǫ11 + ǫ33)− b1y
t
2y

t
2 − b2(y

t
1y

t
1 + yt3y

t
3)− σR

22

σ33 = c1111ǫ33 + c1122(ǫ11 + ǫ22)− b1y
t
3y

t
3 − b2(y

t
1y

t
1 + yt2y

t
2)− σR

33

σ12 = c1212ǫ12 − b3y
t
1y

t
2 − σR

12

σ13 = c1212ǫ13 − b3y
t
1y

t
3 − σR

13

σ23 = c1212ǫ23 − b3y
t
2y

t
3 − σR

23

(11)

where c1111 = 1−ϑ
(1+ϑ)(1−2ϑ)Y , c1122 = ϑY

(1+ϑ)(1−2ϑ) , c1212 = Y
(1+ϑ) , Y = 1×108 N/m2 is Young’s modulus,

and ϑ = 0.45 is Poisson’s ratio. Table 2 represents parameters used in the present study. An uniform

bending of a monodomain thin film during the trans-cis photoisomerization is numerically performed

using photostrictive parameters that assume long spacers otherwise surface relief deformation during

the trans-cis-trans photoisomerization are performed using that in the case of short spacers.
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Supplemental Computational Analysis

The computational domain for the two configurations simulated in the main text is shown in

Figure 1. The domain in Figure 1(a) is used to simulate bending from uniform light exposure while

Figure 1(b) describes the computational domain used in the surface relief grating simulations.

In the visible light regime (λ0= 442 nm), the trans-cis-trans photoisomerization leads to anisotropic

evolution of the azobenzene microstructure as the trans state molecules reorient perpendicular to

the electric field direction of the polarized light. During this process there is also an amount of

concentration build-up of the cis state during to trans-cis photoisomerization. As illustrated in the

main text, this behavior is particularly complex for the case of a vortex beam. Supplementary plots

of simulations of the surface relief grating are given to clarify the model predictions leading to surface

deformation shown in the main article. In Figure 2, the formation of the cis state from circularly

polarized light is shown. This illustrates a complex competition between order-disorder (trans-cis

Azo-
polymer

x
yz

Vacuum

Vacuum 10

13.5

12

PML

PML

PBC

Linearly 
polarized plane 
wave

Azo-polymer

����

�����

�����

����

���

���

���

x
yz

Laser beam

Vacuum

� �	





	

(a) (b)

Figure 1: Schematic of the azobenzene layer sandwiched between two vacuum layers. (a) Uniform

exposure of linearly polarized light. (b) Light beam geometry for linearly and circularly polarized

light and vortex beams with different topological charge. PML stands for perfectly matched layers.
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photoisomerization) near the center of the beam and order-disorder-reorder (trans-cis-trans photoi-

somerization) near the perimeter of the beam. The disorder near the beam center leads to reduction

in deformation and the dimple seen in Figure 6 in the main article. The protrusions around the

perimeter are attributed to reorientation of the trans order parameter in regions of minimal cis con-

centration. Similar effects, yet more complicated, are seen in the case of a vortex beam as shown in

Figure 3. In this case, we also see the formation of the cis state thus illustrating the interactions

between trans reorientation and order-disorder behavior from formation of cis during visible light

excitation.

Figure 2: Illustration of the formation of the randomly ordered cis state during visible light excitation

from a circularly polarized laser beam. This microstructure corresponds to the simulation illustrated

in Figure 6 in the main article. The color bar corresponds to the magnitude of the trans vector for

comparisons to the cis state.

Due to the complexity of the light intensity and phase induced by the topological charge in the

case of surface deformation due to the exposure of a linearly polarized vortex laser beam, we also

compare the microstructure evolution to the root-mean-squared (RMS) electric field as shown in

Figure 4. From this figure, it is clearly observed that besides the transverse optical field components

Ex and Ey, the longitudinal component Ez is also produced but Ez is smaller by a factor 1/kω
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Figure 3: Illustration of the formation of the cis state during visible light excitation from a vortex

beam with topological charge, ξ = +10. This microstructure corresponds to the simulation illustrated

in Figure 7 in the main article. The color bar corresponds to the magnitude of the trans vector for

comparisons to the cis state.

compared to the dominant transverse optical field component, Ex
6. The intensity of Ez finally leads

to the two-armed spiral struture as shown in Figure 7(b) of the main paper.

We further analyze the model by switching the sign of the topological charge to be ξ = −10 (see

Figure 5). For this case, it is evident that the helical pattern on the surface is opposite to that in

Figure 8(b) in the main paper.
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Table 1: A summary of the material parameters. All parameters for the trans state are given.

Symbol Value Units Definition

mµ 1× 10−28 kg/m3 Mass density of trans and cis electronic coordinates

at −1.27× 1031mt N/m4 Trans free energy parameter

ac 0.66at N/m4 Cis free energy parameter

bt
0

−at/(ŷt
0
)
2

N/m6 Trans free energy parameter

bc
0

−ac/(1− ŷt
0
)
2

N/m6 Cis free energy parameter

atct −2× 10−3at N/m4 Trans-cis-trans photoisomerization parameter

γt
0 6× 10−42 N · s/m4 Isotropic damping of the trans state

γc
0

γt
0

N · s/m4 Isotropic damping of the cis state

q0 0.75× 10−10 C/m3 Nominal charge density

N0 1.33× 1010 − Number of electronic particles within a volume element

qt q0ŷ
t
0 C/m3 Charge density of the trans state

qc q0(1− ŷt
0
) C/m3 Charge density of the cis state

E0 614 V/m Nominal applied field

a0 1× 10−14 N/m2 Diffusion parameter, a0 = at0 = ac0

τavg 1× 10−12 s Photoisomerization time constant

Table 2: Parameters used in the model for shape deformation due to t-c-t photoisomerization process.

Type b1 b2 b3

Long spacer +0.05Y -0.015Y (b1 − b2)/2

Short spacer -0.05Y +0.015Y (b1 − b2)/2
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(a) (b) (c)

Figure 4: Time-averaged electric field on the xy plane at the top-plane of the plate. (a) Ēx. (b) Ēy.

(c) Ēz

Figure 5: Deformation due to a linearly polarized vortex laser beam when the negative vortex

topological charge ξ = −10 is used.
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