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Influence of magnetic state on the vibrational contribution to the surface energy

We wish to estimate the influence of the ferromagnetic (fm) versus paramagnetic (pm) state of Fe on the vibrational contri-

butions to the surface energy (γ) at high temperatures. To this end, we assume that a characteristic Debye temperature (θD)

can be defined so that Fvib equals the free energy within the Debye model [FD(θD)] at a given T . The existence of a surface

perturbs the free energy of the bulk, i.e., ∆FD ≡ F surf
D (θ surf

D )−Fbulk
D (θ bulk

D ) ≡ AγD, where γD denotes the (Debye) vibrational

contribution to the surface energy. In the limit T > θD, ∆FD is determined by the entropy term, i.e., ∆FD ≃ −T∆SD, where

∆SD ≡ Ssurf
D (θ surf

D )− Sbulk
D (θ bulk

D ) and SD denotes the Debye entropy.1 It is readily shown that ∆SD approaches a constants

value,

∆SD

kB
≃ 3ln

(

θ surf
D

θ bulk
D

)

for T > θ bulk
D (> θ surf

D ), (1)

so that ∆FD is essentially linear in T . The relative vibrational contribution to the surface energy (γvib) for the pm and fm states

of Fe are then approximately given by (high temperature limit)

γ
pm
vib

γ fm
vib

≃
γpm

D

γ fm
D

≃ β
lnαpm

lnα fm
, α ≡ 1+

θ e
D

θ bulk
D

, β−1 =
Apm

Afm
(2)

where θ e
D ≡ θ surf

D −θ bulk
D represents a (negative) surface excess. For the fm state, α could be determined from a Debye fit to

the low-frequency part of the phonon DOSs shown in Fig. 2 in the main document. Since the same data sets are, however,

not available for the pm state, we consider instead the long-wavelength limit (sound waves), defined by elastic properties, to

estimate the ratio of the Debye temperatures in Eq. (2).

The perturbation of elastic modes due to the existence of a surface is expressed by excess surface elastic constants (Ce),2

which, assuming the same isotropic distortion as for the surface stress (main document), are defined by

Ce = (2A)−1∂ 2(Esurf −Ebulk)/∂ε2|ε=0. (3)

Here, E = E0 +Emag accounts for magnetic disorder. The softening of the surface vibrational modes relative to the bulk is

expressed by a negative excess, i.e., Ce < 0. The surface excess of the elastic modes is confined to the depth of the surface zone

(nd), here denoted by n and expressed in terms of the equilibrium interlayer distance (d). Splitting up the surface subsystem

(first term on the right hand side of Eq. (3); which computationally corresponds to a slab) into the surface zone and a bulk-like

zone, the total energy contribution originating from the bulk-like zone formally cancels the one from the bulk subsystem taken

for the same number of layers (second term on the right hand side of Eq. (3)). The remaining part is the total energy excess of

the surface zone with respect to the bulk of identical thickness (nd). We may then denote by nCbulk the bulk part of Ce for the

depth of the surface zone, where Cbulk is the bulk contribution per atomic layer. For transition metals, we found that n ≃ 2−3



is reasonable in agreement with previous assessments.2–4 In the following, we use n = 2. Analogous to the bulk case,5 where

θD ∝ B1/2, B being the bulk modulus, for the surface excess we have θ e
D ∝ −|Ce|1/2 and θ bulk

D ∝ (nCbulk)1/2. The final result

for α reads α ≃ 1− (|Ce|/2Cbulk)1/2, which is used in conjunction with Eq. (2) to estimate γ
pm
vib from the computed γ fm

vib.

We obtained for (γ
pm
vib/γ fm

vib)(001) ≃ 0.6 and for (γ
pm
vib/γ fm

vib)(110) ≃ 1.0. The former result indicates that the surface excess to

the surface energy due to vibrations on the (001) surface facet is smaller in the pm state than in the fm state. The latter value

for the (110) surface facet signals that the vibrational contribution to the surface excess is rather independent on the magnetic

state. Finally, accounting for fm order below TC and pm order above γ(Tm) may be obtained by

γ(Tm)≈ γ fm(TC)+
(

γ fm(Tm)− γ fm(TC

) γ
pm
vib

γ fm
vib

. (4)

We notice that within the PDLM model (main document) we may obtain γ(T ) by an integration of the weighted fm and pm

contributions, 2x(T ) ∂γpm

∂T
+(1− 2x(T)) ∂γfm

∂T
, x(T ) being the PDLM concentration mapped to T . Since x(T ) in the fm phase

is significantly larger than 0 only in the vicinity of TC, the so-weighted value for γ(T ) is only slightly smaller than the value

directly obtained from Eq. (4).
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