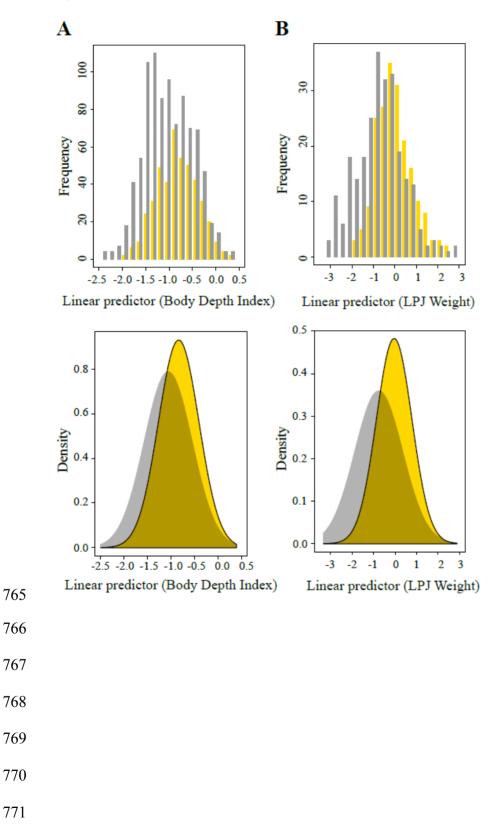
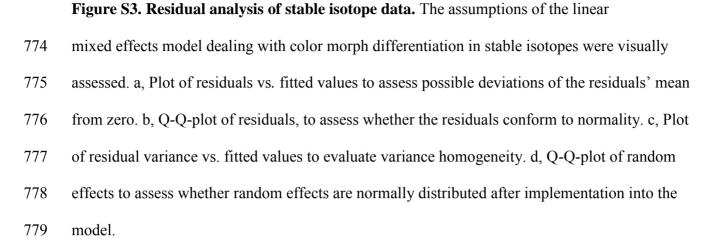

699 Additional Files

Figure S1. Definition of eco-morphological measurements. a. Anatomical 702 description of body landmarks: LM 1 = tip of snout; LM 2 = most posterior point of the lips; LM 703 3, 4 = most anterior and posterior margin of the eye; LM 5 = intersection of operculum and 704 ventral body outline; LM 6 = anterior base of dorsal fin; LM 7, 8 = dorsal and ventral base of 705 pectoral fin; LM 9 = anterior base of pelvic fin; LM 10, 11 = anterior and posterior base of anal 706 fin; LM 12 = posterior base of dorsal fin; LM 13, 14 = dorsal and ventral base of caudal fin; LM707 15 = midpoint of the caudal fin origin; LM 16 = nostril; LM 17 = dorsal end of pre-operculum; 708 LM 18 = dorso-caudal origin of the operculum. b, Anatomical description of LPJ landmarks 709 along with representative examples of "molariform" and "papilliform" LPJ morphologies: LM 1, 710 2 & LM 10, 11= tips of posterior and lateral processes of upper horn; LM 3, 9 = points of highest 711 curvature in upper horn base; LM 4, 8 = points of closest intersection between horn base and 712 dentition area; LM 5, 7 = points of highest curvature near the mid-point of the two adjacent 713 landmarks; LM 6 = posterior-most point of lower pharyngeal jaw suture; LM 12-15 & 18-21 = 714 points of highest curvature near the mid-point of the two adjacent landmarks; LM 16, 17 = 715 anterior tips of lower horn processes; LM 22, 23 = most posterior teeth of the "external line" of 716 the dentition area; LM 24 = point where the suture meets the dentition area. 717 718 719 720 721




- 12)

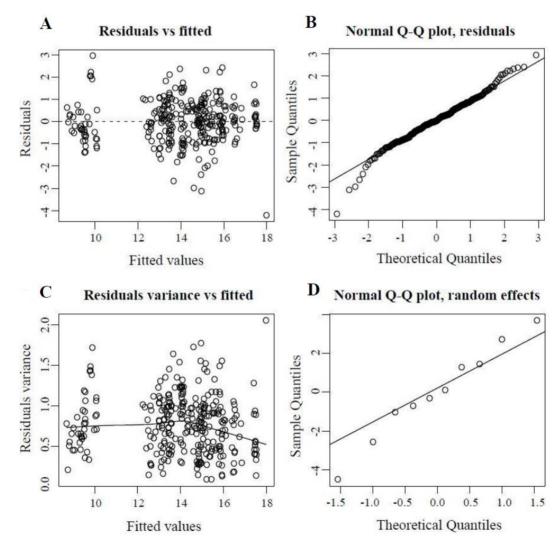

	Figure S2. Logistic regression: Frequency distributions of the linear predictor for
741	gold and dark morphs. a, Body Depth Index and b, LPJ weight. The histograms (upper panels)
742	indicate absolute frequency of individuals of each color morph (y-axis), whereas the density
743	distributions (bottom panels) are corrected for unequal sample sizes. The linear predictor (x-axis)
744	is a linear function that defines the relationship between the dependent (i.e. gold/dark) and the
745	explanatory variables (i.e. BDI or LPJ weight, both corrected for allometry). The likelihood of a
746	given individual being a gold morph, as predicted by the model and reflected in the linear
747	predictor, clearly increased with higher values of BDI and LPJ weight. The linear predictor for
748	BDI was -0.99 +15.75*BDI and the one for LPJ weight was -0.45 + 1.49*LPJ weight. Gelman
749	and Hill's "divide by 4 rule" [57] allows to interpret logistic regression coefficients in terms of
750	the predicted probabilities of the model outcome (slope for BDI-model = 15.75; slope for LPJ
751	weight-model 1.49). Practically, when considering a shift in increasing BDI of ~ 0.1 (BDI ranges
752	from -0.1 to 0.09, spanning 0.19 units) the probability of being gold increased by maximally 39.4
753	%. When considering a relative shift of LPJ weight of increasing 1 unit (LPJ weight ranges from
754	-1.93 to 2.23, spanning 4.16 units) the probability of being gold increased by maximally 37.3 %.
755	
756	
757	
758	
759	
760	
761	
762	
763	

Figure S2. Logistic regression: Frequency distributions of the linear predictor for

		Body shape		BDI (n = 1,354)		LPJ shape		Stable isotopes		Evol. trajectory	
			,117)				465)		298)		232)
Lake	Species	n gold	<i>n</i> dark	n gold	<i>n</i> dark	n gold	n dark	n gold	<i>n</i> dark	n gold	<i>n</i> dark
As. Managua	A. tolteca	51	138	52	232	43	54	36	38	28	26
Apoyeque	A. cf. citrinellus	7	25	7	107	7	19	8	11	7	6
Masaya	A. cf. citrinellus	16	38	16	38	15	33	13	20	10	15
	A. cf. labiatus	13	2	13	2	8	2	17	3	8	2
Xiloá	A. sagittae	6	133	6	133	4	39	2	20	2	14
	A. xiloaensis	67	77	67	77	31	21	18	16	14	10
Managua	A. citrinellus	60	114	60	114	24	21	16	14	15	13
	A. labiatus	4	32	4	32	4	13	2	16	2	13
Nicaragua	A. citrinellus	104	120	104	120	32	30	10	11	10	11
	A. labiatus	114	56	114	56	34	31	14	13	13	13

Table S1. Sample sizes of color morphs used for each analysis.

Table S2. Pair-wise morphological differentiation between Midas cichlid color

786 **morphs**. The outcome of discriminant function analyses of body shape and lower pharyngeal jaw

morphology is shown for each of the ten morph pairs. The degree of body and pharyngeal jaw

shape differentiation is indicated by Procrustes distances.

		Body s	hape		LPJ shape					
Lake	Species	Proc. dist.	Hotel. T ²	<i>p</i> -value	Proc. dist.	Hotel. T ²	<i>p</i> -value			
As. Managua	A. tolteca	0.011	118.78	<0.0001	0.012	80.58	< 0.0001			
Apoyeque	A. cf. citrinellus	0.022	6002.65	0.304	0.019	368.74	0.328			
Masaya	A. cf. citrinellus	0.013	116.09	0.182	0.007	20.85	0.931			
	A. cf. labiatus	0.02	79.69	0.766	0.036	20.34	0.174			
Xiloá	A. sagittae	0.023	98.22	0.002	0.025	49.35	0.414			
	A. xiloaensis	0.025	265.03	< 0.0001	0.022	167.34	< 0.0001			
Managua	A. citrinellus	0.01	67.99	0.01	0.037	113.38	0.014			
-	A. labiatus	0.03	121.04	0.954	0.016	85.6	0.886			
Nicaragua	A. citrinellus	0.012	189.56	<0.0001	0.006	24.23	0.817			
8	A. labiatus	0.01	96.25	< 0.0001	0.008	36.99	0.353			

789

Table S3. Overview of color-associated divergence in eco-morphology and stable

isotope ecology. The table shows mean regression residuals of BDI and LPJ weight after allometry correction, $\delta^{15}N$ as well as standard length for each group. Boldface indicates the color morph group with relatively higher values within each morph pair. The average gold morph in each morph pair generally exhibited higher BDI (7/10) and LPJ values (9/10), even after correcting for size and allometric effects. In 9 out of 10 morph pairs the gold morph was at a relatively lower trophic level than the dark morph as inferred from $\delta^{15}N$.

	Species	BDI [mean]		LPJ weig	ht [mean]	δ ¹⁵ N	[‰]	Standard length [mm]		
Lake		gold	dark	gold	dark	gold	dark	gold	dark	
As. Managua	A. tolteca	-0.005	-0.026	-0.002	-0.386	15.09	15.42	100.6	113.2	
Apoyeque	A. cf. citrinellus	0.002	0.005	0.178	0.017	8.9	9.36	99.3	102.3	
Masaya	A. cf. citrinellus	0.032	0.024	0.058	0.086	13.9	13.81	90.2	106.3	
-	A. cf. labiatus	0.039	0.012	0.264	-0.032	13.19	13.36	78.5	92.2	
Xiloá	A. sagittae	-0.017	-0.041	-0.330	-1.217	14.51	14.78	178.0	168.6	
	A. xiloaensis	0.021	-0.005	0.533	-0.338	13.22	14.62	158.0	158.1	
Managua	A. citrinellus	0.042	0.036	0.263	0.131	15.93	16.53	165.3	160.0	
-	A. labiatus	0.007	-0.002	0.460	0.314	17.18	17.51	112.8	154.9	
Nicaragua	A. citrinellus	0.011	0.023	1.078	0.785	8.72	10.61	154.9	148.6	
0	A. labiatus	-0.014	-0.009	-0.250	-0.311	12.43	13.15	136.4	146.4	

798

799

800

Table S4. Evolutionary trajectory analysis. The evolutionary trajectory analysis is based on the ecological variables BDI,

- 803 LPJ weight as well as the isotopic signatures of δ^{15} N and δ^{13} C. The table shows absolute values (above the diagonal) and associated *p*-
- 804 values (below the diagonal) for pair-wise differences in trajectory size and orientation. Bold font indicates *p*-values that differ statistically
- 805 (< 0.05; no correction for multiple tests). Across all comparisons combined, length ($\Delta d = 0.48$, p = 0.005) and orientation ($\theta = 1625.74$, p
- 806 = 0.001) differ though there is a large component of trajectories being parallel across many morph pairs (Fig. 2d).

_						Trajectory size					
		Apoyeque	As. Managua	Managua	Managua	Masaya	Masaya	Nicaragua	Nicaragua	Xiloá	Xiloá
_		A. cf. citrinellus	A. tolteca	A. citrinellus	A. labiatus	A. cf. citrinellus	A. cf. labiatus	A. citrinellus	A. labiatus	A. sagittae	A. xiloaensis
	Apoyeque A. cf. citrinellus		0.01	0.50	0.01	0.45	0.41	0.77	0.26	2.04	0.59
	As. Managua A. tolteca	0.980		0.49	0.00	0.44	0.42	0.78	0.25	2.05	0.60
	Managua A. citrinellus	0.249	0.128		0.483	0.05	0.91	1.26	0.24	2.54	1.09
	Managua A. labiatus	0.981	0.993	0.338		0.43	0.43	0.78	0.24	2.06	0.61
value	Masaya A. cf. citrinellus	0.307	0.195	0.898	0.388		0.86	1.21	0.19	2.49	1.04
	Masaya A. cf. labiatus	0.449	0.375	0.107	0.467	0.121		0.35	0.67	1.63	0.18
	Nicaragua A. citrinellus	0.092	0.031	0.001	0.138	0.002	0.489		1.02	1.28	0.17
	Nicaragua A. labiatus	0.563	0.450	0.515	0.634	0.614	0.205	0.008		2.30	0.85
	Xiloá A. sagittae	0.001	0.001	0.000	0.001	0.000	0.012	0.019	0.000		1.45
	Xiloá A. xiloaensis	0.185	0.079	0.004	0.239	0.006	0.720	0.673	0.025	0.010	

-		Trajectory direction [°]										
		Apoyeque	As. Managua	Managua	Managua	Masaya	Masaya	Nicaragua	Nicaragua	Xiloá	Xiloá	
_		A. cf. citrinellus	A. tolteca	A. citrinellus	A. labiatus	A. cf. citrinellus	A. cf. labiatus	A. citrinellus	A. labiatus	A. sagittae	A. xiloaensis	
-	Apoyeque A. cf. citrinellus		106.24	109.29	158.57	127.92	81.52	28.68	135.24	95.24	112.32	
	As. Managua A. tolteca	0.619		91.93	91.52	118.17	30.35	129.35	47.27	12.23	14.04	
	Managua A. citrinellus	0.523	0.310		76.67	66.21	87.39	117.74	52.07	99.75	78.19	
	Managua A. labiatus	0.101	0.410	0.494		34.42	118.70	130.66	64.58	101.07	86.28	
p -value	Masaya A. cf. citrinellus	0.403	0.424	0.508	0.770		140.41	105.36	84.02	126.46	109.24	
	Masaya A. cf. labiatus	0.593	0.705	0.433	0.313	0.215		108.94	59.78	26.93	33.56	
	Nicaragua A. citrinellus	0.741	0.870	0.626	0.385	0.523	0.546		162.37	117.30	138.25	
	Nicaragua A. labiatus	0.445	0.130	0.408	0.518	0.463	0.509	0.218		58.87	35.42	
	Xiloá A. sagittae	0.601	0.925	0.321	0.379	0.321	0.857	0.768	0.263		24.03	
_	Xiloá A. xiloaensis	0.396	0.934	0.574	0.539	0.479	0.824	0.232	0.791	0.927		