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Supplementary Table 1 | New features in jModelTest 2. jModelTest 2 
implements a number of new features that facilitate model selection among 
more models and for large data sets. 
 

New feature Description 

1. Exhaustive 
GTR 
submodels 

All the 203 different partitions of the GTR rate matrix1

can be included in the candidate set of models. When 
combined with rate variation (+I,+G, +I+G) and 
equal/unequal  base frequencies the total number of 
possible models is 203 × 8 = 1624. 
 

2. Hill-climbing 
hierarchical 
clustering 

Calculating the likelihood score for a large number of 
models can be extremely time-consuming. This hill-
climbing algorithm implements a hierarchical clustering 
to search for the best-fit models within the full set of 
1624 models, but optimizing at most 288 models while 
maintaining model selection accuracy. 
 

3. Heuristic 
filtering 

Heuristic reduction of the candidate models set based on 
a similarity filtering threshold among the GTR rates and 
the estimates of among-site rate variation. 
 

4. Absolute 
model fit 

Information criterion distances can be calculated for the 
best-fit model against the unconstrained multinomial 
model (based on site pattern frequencies)2. This is 
computed by default when the alignment does not 
contain missing data/ambiguities, but can also be 
approximated otherwise. 
 

5. High 
Performance 
Computing 

Model selection can be executed in parallel in multicore 
desktop machines and in HPC clusters achieving large 
speedups. 
 

6. Topological 
summaries 

Tree topologies supported by the different candidate 
models are summarized in the html log, including 
confidence intervals constructed from cumulative models 
weights, plus Robinson-Foulds3 and Euclidean distances 
to the best-fit model tree. 
 

7. Alignment 
sample size 

The alignment sample size used for the AICc and BIC 
frameworks can be calculated according to alignment 
length (L) as before, but also as the number of variable 
sites, L × the number of sequences (N), Shannon entropy 
and Normalized Shannon entropy multiplied by N × L. 
 

8. User-friendly 
HTML log 

The results of the model selection can be displayed in 
html format including maximum likelihood trees derived 
from each model and linked to 
http://www.phylowidget.org4 for graphical depiction. 
 



 
 

3

 
 
 
Supplementary Table 2 | Model selection accuracy. Model selection accuracy 
was defined as the number of times the best-fit model selected by jModelTest 2 
was the generating model. In case these models differed, we kept track of which 
components of the generating model were identified correctly (base frequencies, 
partition, rate variation among sites). In this table we show the model selection 
accuracy (%) across 10,000 data sets. Num Params refers to the mean number of 
parameters of the best-fit models. Full Model refers to the number of times the 
exact generating model was selected as the best-fit model. Partition refers to the 
number of times the structure of the R-matrix was correctly identified. Rate 
Variation refers to the number of times the rate variation parameter 
combinations (+I, +G, +I+G) were correctly identified. 
 
 

Criterion Num 
Params 

Full 
Model 

Partition Rate 
Variation 

AIC 5.62 62.36 70.64 93.11
BIC 4.99 89.34 89.87 99.29
DT 4.99 89.30 89.94 99.27
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Supplementary Table 3 | Mean square errors for model averaged 
estimates. To obtain the MSEs, and because the generating model and the best-
fit model can differ, we did not consider every case for every parameter. For the 
base frequencies, transition/transversion ratio and R-matrix we considered all 
cases (see Supplementary Note 3). For the proportion of invariable sites in +I 
models (p-invI) we considered only cases where the generating model was M (p-
inv=0) or M+I (p-inv = simulated). For the proportion of invariable sites in +I+G 
models (p-invIG) we considered only cases where the generating model was 
M+I+G (p-inv = simulated). For the alpha shape of the gamma rate variation 
among sites in M+G models (alphaG) we considered only cases where the 
generating model was M+G (alpha = simulated). For the alpha shape of the 
gamma rate variation among sites in M+I+G models (alphaIG) we considered 
only cases where the generating model was M+I+G (p-inv = simulated). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
  

Parameter MSE (AIC) MSE (BIC)
fA 0.01 0.01
fC 0.01 0.01
fG 0.01 0.01
fT 0.01 0.01
titv 0.88 0.75
Ra 3.93 2.46
Rb 13.46 12.03
Rc 6.12 10.95
Rd 4.92 3.26
Re 6.16 5.38
p-invI 0.83 0.83
p-invIG 0.02 0.02
alphaG 0.09 0.09
alphaIG 0.14 0.14
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Supplementary Note 1 | Hill-climbing hierarchical clustering algorithm. 
Models of DNA substitution are defined by a rate matrix R, which describes the 
rate at which nucleotides of one type change into another type (e.g., rij  for i ≠ j), 
is the rate at which base i goes to base j. Because the models are most of the time 
assumed time reversible for tractability, this rate matrix is in practice always 
symmetrical. Therefore, we can define the rate matrix just in terms of the upper 
triangular matrix as a vector of 6 rates (rAC, rAG, rAT, rCG, rCT, rGT). Note that we 
assume all rates are relative to rGT, which is set to 1.0. We can reduce the number 
of free parameters further forcing several of these rates to be the same. For 
example, we could assume the same rate for the two types of transitions (rAG = 
rCT). An easy way to label these partitions (i.e., the set of constraints) is indicating 
with 6 digits which rates are forced to be identical. For example, the JC5 model 
has the partition 000000, where all the 6 rates among the 4 nucleotides are 
identical, while the GTR or SYM6 models have the partition 012345, where all 6 
rates are different. How many partitions are in between? The number of ways in 
which we can subdivide n elements into (non-empty) groups is given by the Bell 
numbers, B(n), which in turn is the sum from k = 1 to k = n of the number of ways 
to partition a set of n elements into k (non-empty) groups, which is given by the 
Stirling numbers of the second kind, S(n,k): 
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Accordingly, the R-matrix can be partitioned in B(3) = 203 different ways. For 
each R-matrix we can build 8 different models depending on the rate variation 
parameters (i.e., +I, +G and +I+G models) and whether we considered 
equal/unequal frequencies. Therefore, the total number of possible time 
reversible models is 203 × 8 = 1624. Indeed, the exhaustive computation of so 
many models is only feasible for small alignments or when computer power is 
not a problem.  To alleviate this situation, we have implemented a simple, greedy 
hill climbing heuristic to search for the best-fit model in large candidate sets of 
models (up to 1624) without evaluating all of them (i.e., avoiding an exhaustive 
search). The algorithm is as follows: 
 

1. Start with n = 6 and k = 6. There is only a single partition (012345) that 
fits this condition.  

2. Select the best-fit model, Mbest, according to the chosen information-
theoretic criterion (AIC, AICc or BIC). 

3. Set k = k – 1. 
4. Define a new set of models by exploring all possible merges of two groups 

into a single group. 
5. Select the best-fit model, Mbest_merge, from this set. 
6. If Mbest has a better AIC/AICc/BIC score than Mbest_merge, stop, otherwise 

continue 
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7. Set Mbest = Mbest_merge  
8. Update the number of elements (n = n – 1).  
9. Repeat from step 3 until the algorithm finds a local maxima or k = 1. 

 
Note that in fact we are travelling in diagonal through the Stirling numbers of the 
second kind pyramid (Fig. S1), evaluating models only at those stages where k = 
(n-1) for n = 1…6. 
 

 

 
 

Figure S1 | Stirling numbers of the second kind. The rows sum to the nth Bell number 
(e.g., 203 for n = 6). The squared numbers represent the stages of our hierarchical 
clustering algorithm. As long as our algorithm moves forward, the number of elements 
and groups are reduced by one until there is a single group.  
 
 
In this heuristic the number of model partitions evaluated goes from a minimum 
of  1 to a maximum of 36 (i.e., up to 36 x 8 = 288 different models). Because, as 
any heuristic, this algorithm can get stuck in local optima, we have evaluated its 
performance analyzing 2,000 simulated alignments (as in Supplementary Note 
3 but considering all possible 203 R-matrices). In this case, our heuristic finds 
the same model as the exhaustive search 95% of the time. Note that a very 
similar heuristic to find model partitions across multigene data sets has just been 
developed7. 
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Supplementary Note 2 | Heuristic filtering. For very large alignments, even 
the computation of the likelihood of the 88 standard models implemented in the 
previous version of jModelTest can take a long time. We have developed a 
second heuristic to find the best-fit model without evaluating all candidate 
models. The basic idea is that model selection can be somewhat predicted from 
the most complex model. Our strategy attempts to significantly reduce the 
number of candidate models evaluated paying attention to the GTR+I+G rate 
matrix and the base frequencies estimates. For example, if the maximum 
likelihood estimates of the transition and transversion rates are very different 
and the likelihood score is low enough (so we expect noticeable likelihood 
differences among models), one could obviate the evaluation of a simple model 
like JC.  We perform the filtering process in three main steps: (1) look at the rate 
matrix, where different enough rates will imply that models with equal rates will 
be excluded; (2) look at the base frequencies, where different enough 
frequencies will imply that models with equal base frequencies will be excluded; 
and (3) look at the among-site rate variation, where small p-inv or alpha 
estimates will imply that only site-homogeneous models will be considered. 
        
To decide what can be considered different enough we defined a filtering 
threshold (δ). A higher δ means a larger model set and a smaller probability if 
getting trapped in local optima (i.e., the model selected is not the best one 
according to the selection criterion). On the other hand, a lower δmeans more 
possibilities of selecting the optimal model but less computational load. Although 
accurate among-site rate variation filtering should be presumably implemented 
from the GTR+I or GTR+G models, we prefer to use a single model (GTR+I+G) for 
every dataset. Because these two rate variation parameters (alpha and pinv)  try 
to model the same thing, a proportion of invariable sites could be theoretically 
‘converted’ into gamma rate variation in the +I+G model. Therefore, we use the 
two thresholds just described for excluding models at this step. Once the filtering 
is completed, we will obtain a set of excluded models that it is not necessary  to 
optimize. The whole heuristic is as follows: 
 

1. Optimize the GTR+I+G model, obtaining maximum likelihood estimates of 
the R-matrix (to facilitate notation rAC, rAG, rAT, rCG, rCT and rGT will be 
referred here as r1, r2, r3, r4, r5 and r6, respectively), base frequencies (π1, 
π2, π3 and π4), the proportion of invariant sites (pinv = ρ) and the alpha 
shape of the gamma distribution (alpha = α) estimates. 

2. Set up a filtering threshold δ ∈ ℜ > 0 
3. If the standard deviation of the rates ri is high enough (σ > 1.0) 

standardize them to a z-score: z
i
=(r

i
−r

i
)/σ

ri

 
4. Calculate the pairwise differences between every pair of rates D

ij
= z

i
− z

j
 

5. If Dij > δ, all models with equal i and j rates will be ignored during the 
selection process. One special case is for the transition rates (r2 and r5) , 
where the rates are known to be higher than the transversion rates. 
Therefore in this case we use a more stringent threshold, D25 > 2δ. 
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6. Check whether  
min π1 ,π2 ,π3 ,π4( )
max π1 ,π2 ,π3 ,π 4( ) <	1−δ( ) 

7. In this case, all models with equal frequencies are ignored. 
8. Define a gamma shape threshold αmin ∈ ℜ (αm should be big enough, e.g., 

αm = 50). 
9. If α < αmin filter out all +G and +I+G models from the candidate set  
10. Let ρmin ∈ ℜ and αmax ∈ ℜ, where ρmin is the minimum ρ and αmax the 

maximum α. Then +I models will be excluded if ρ < ρmin and α > αmax. Note 
that αmax is not expected to be as big as αmin, but the higher it is, the less 
probably is to exclude the best-fit model. 

 
In addition, our empirical analysis also showed that the effectiveness of this 
heuristic depends on the ‘complexity’ of the input data, which is reflected in the 
likelihood score. For simpler data sets the likelihood is smaller, and the number 
of parameters become more decisive, favoring the selection of simpler models. 
However, in this case the reduction of the candidate models set is also less 
important since the execution times will also be smaller. Fig. S2 shows the 
heuristic accuracy as a function of the likelihood score across 4,000 alignments 
sampled from the 10,000 simulated. 
 

 
Figure S2 | Likelihood score and heuristic performance. The figure shows the 
percentage of best-fit models identified during the exhaustive search wrongly filtered 
out (1 - heuristic accuracy) from the candidate model set in function of the likelihood of 
the GTR+I+G model for a fixed filtering threshold. 
 
Since it is difficult for the user to estimate a priori the likelihood of the models, 
we aimed to find some kind of general “threshold tuning” that depends on the 
likelihood score of the GTR+I+G model and guarantees a similar trade-off 
between the accuracy of the heuristic and the computational savings to that 
depicted in Fig. 1 independently of the particular data set. Using logarithmic 
interpolation we arrived to the following function: 
 

f (x)= t
−5ln(x −1)+6ln(151)−1ln(1)

ln(151)− ln(1)
 

 
where t is the user-defined filtering threshold and x is the -lnL of the GTR+I+G 
model for the specific data set divided by 1000. 
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Supplementary Note 3 | Simulations from prior distributions. We simulated 
10,000 nucleotide sequence alignments with 40 sequences and 2500 bp each. In 
order to consider a variety of simulation scenarios we first sampled model 
parameters and random trees from different statistical distributions using 
R8.  Then, we used Seq-Gen9 to simulate the DNA sequences accordingly and 
analyzed them with jModelTest 2. We considered 4 model families: without rate 
variation (M), with a proportion of invariable sites (M+I), with gamma rate 
variation among sites (+G), and with both a proportion of invariable sites and 
gamma rate variation among sites (+I+G). The simulation pipeline was repeated 
2,500 times for each model family in turn: 

 
1. Select at random one of the 22 possible models implemented in jModelTest 2 

for the given family according to a Uniform distribution U(0,21). 
 

2. Assign parameter values according to the model predefined structure: 
2.1. The base frequencies (ACGT) are set to 0.25 or sampled from a 

Dirichlet distribution D(1.0,1.0,1.0,1.0). 
2.2. The transition/Transversion rate comes from a Gamma distribution 

G(2,1) truncated between 2 and 10 
2.3. The R-matrix parameters are sampled from a Dirichlet distribution 

D(6,16,2,8,20,4) scaled with the last rate. 
2.4. The gamma shape for rate variation among sites comes from an 

Exponential distribution E(2) truncated between 0.5 and 5. 
2.5. The proportion of invariable sites is sampled from a Beta 

distribution B(1,3) truncated between 0.2 and 0.8. 
 

3. Generate a random non-ultrametric rooted tree: 
3.1. We used the function rtree from the ape R package10 (this works 

splitting randomly the edges) with branches according to a 
Exponential distribution E(1,10).  

3.2. Total tree length was scaled so the tree length was uniformly 
distributed in the U[2, 12] interval. 

 
4. Simulate a sequence alignment using the parameter values sampled and the 

simulated tree using SeqGen9. 
 

5. Analyze this dataset using jModelTest 2: select the best-fit model under the 
AIC, BIC and DT criteria and obtain model-averaged parameter estimates. 
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Supplementary Note 4 | Speed-up benchmark on real and simulated 
datasets. We analyzed several real data sets in order to benchmark the speed-
ups obtained with jModelTest 2: 
 

Dataset Organism Genes NumSeq Length Reference 
A HIV-1 polimerase 8 3009 http://www.hiv.lanl.gov/ 

B HIV-1 whole 
genome 

138 10693 http://www.hiv.lanl.gov/ 

C Yeast 106 genes 8 127060 Rokas et al. (2003) 
D simulated -- 40 500 Guindon and Gascuel (2003)
E simulated -- 100 500 Guindon and Gascuel (2003)

 
Datasets A and B are trimmed alignments initially downloaded from 
http://www.hiv.lanl.gov/.  Dataset C was provided by Antonis Rokas11. Datasets 
D and E are two alignments already used for benchmarking Phyml12, and can be 
downloaded from http://www.atgc-montpellier.fr/phyml/datasets.php.  
 
The threaded version of jModelTest 2 was executed on CESGA’s SVG nodes with 
2 AMD Opteron Processors 6174@2.2GHz (2x12 cores, hence 24 cores) and 
32GB memory. The MPI-based version of jModelTest 2 was executed on 8 Xeon 
nodes with 2 Intel Xeon E5420@2.50GHz per node (2x4 cores, hence 8 cores per 
node) and 16GB memory. These nodes are interconnected via 10 Gigabit 
Ethernet. The hybrid multithread/MPI-based implementation was executed in a 
public cloud infrastructure, in 32 Amazon EC2 cluster compute instances (23 GB 
memory, 33.5 EC2 Compute Units and Linux OS), with two Intel Xeon X5570 
quad-core Nehalem processors each instance, hence 8 cores per virtual machine. 
These systems are interconnected via 10 Gigabit Ethernet, which is the 
differential characteristic of this resource. In fact, this EC2 instance type has been 
specifically designed for HPC applications and other demanding latency-bound 
applications. According to Amazon one EC2 Compute Unit provides the 
equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor. 
 
In the shared memory architecture with 24 cores, the scalability of the 
multithreaded implementation was almost linear with up to 8 threads, but also 
scaled well with 24 threads (Fig. S3a). In a cluster –distributed memory– the 
MPI-based application scaled well up to 32 processes, especially for the largest 
data sets (Fig. S3b). Here, the fact that some models can be optimized much 
more faster than others –especially when they do not include rate variation 
among sites–, posed a theoretical limit to the scalability. This problem was 
circumvented when we implemented a hybrid multithread/MPI-based approach 
–shared and distributed memory–, executed on Amazon EC2 cloud, which 
resulted in speedups of 182-211 with 256 processes even for the most complex 
cases (Fig. S3c). For relatively large alignments here (e.g., 138 sequences and 
10,693 sites) this could be equivalent to a reduction of the running time from 
near 8 days to around 1 hour. 
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Figure S3. Scalability of jModelTest 2 with real and simulated data. The x-axis 
represents the number of parallel processes used in executions, and the y-axis 
represents the speedup regarding the sequential execution. n is the number of taxa and l 
is the alignment length. 
 
In addition, we ran additional simulated datasets with up to 100 taxa and 10,000 
sites on a different testbed. With shared memory (Fig. S4a), jModelTest 2 
showed an almost linear speedup up to 8 threads (1 per core). When enabling 
hyperthreading (12 or 16 threads on 8 physical cores) the scaling-up was less 
pronounced. With distributed memory (Fig. S4b), the scalability was even 
better, reaching some saturation with 64 processes, mainly due to the serialized 
execution of each model optimization and the workload imbalance between 
models. As the 22 +G models represent around 80% of the total execution time, it 
is expected a theoretical limit 40X speedup in most cases. The hybrid memory 
version brings a more fine grain parallelism, and therefore overcomes the 
previous scalability limit (Fig. S4c). Those tests with higher computational load 
reached up to 130X speedup, while the lightest ones showed reduced efficiency 
due to the low computational load per process, making the parallel overhead 
(i.e., the cost of communications and synchronization) larger in relative terms. In 
this experiment, shared memory speedups were obtained in an 8-core node with 
Hyper-Threading technology (i.e., running up to 16 threads on 8 physical cores). 
The distributed memory version was executed on  8 Xeon nodes with 2 Intel 
Xeon E5420@2.50GHz per node (2 × 4 cores, hence 8 cores per node) and 16GB 
memory. These nodes are interconnected via 10 Gigabit Ethernet. The Hybrid 
memory version was executed on 32 nodes with the same features. 
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Figure S4. Scalability of jModelTest with simulated data. The speedups reported are 
for (a) Shared memory (red numbers in the x-axis indicate hyperthreading), (b) 
Distributed memory and (c) Hybrid memory version. n is number of taxa and l is the 
alignment length.  
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